

Register your instrument! www.eppendorf.com/myeppendorf

Eppendorf BioPhotometer® D30

Bedienungsanleitung

Copyright © 2019 Eppendorf AG, Germany. All rights reserved, including graphics and images. No part of this publication may be reproduced without the prior permission of the copyright owner.

Trademarks

Cy® is a registered trademark of GE Healthcare UK Ltd., UK.

Eppendorf® and the Eppendorf Brand Design are registered trademarks of Eppendorf AG, Germany.

Eppendorf BioPhotometer®, Eppendorf μ Cuvette®, and UVette® are registered trademarks of Eppendorf AG, Germany.

Registered trademarks and protected trademarks are not marked in all cases with ® or TM in this manual.

Notice

The software of the BioPhotometer D30 contains open source software. License information is available under Functions > Info > Copyrights.

Inhaltsverzeichnis

1	Anw	endungshinweise	7
	1.1	Anwendung dieser Anleitung	7
	1.2	Gefahrensymbole und Gefahrenstufen	7
		1.2.1 Gefahrensymbole	7
		1.2.2 Gefahrenstufen	7
	1.3	Darstellungskonventionen	7
	1.4	Abkürzungen	8
2	Allae	emeine Sicherheitshinweise	9
	2.1	Bestimmungsgemäßer Gebrauch	
	2.2	Anforderung an den Anwender	
	2.3	Gefährdungen bei bestimmungsgemäßem Gebrauch	
		2.3.1 Personenschaden	
		2.3.2 Geräteschaden	
	2.4	Hinweise zur Produkthaftung	. 12
	2.5	Sicherheitshinweise am Gerät.	
3	Prod	duktbeschreibung	. 13
•	3.1	Produktübersicht	
	3.2	Lieferumfang	
	3.3	Produkteigenschaften	
		3.3.1 Methoden	
		3.3.2 Bedienung	. 14
		3.3.3 Ergebnisausgabe	
		3.3.4 Selbsttest des Geräts	. 14
4	Insta	allation	. 15
	4.1	Installation vorbereiten	. 15
	4.2	Standort wählen	. 15
	4.3	Gerät an das Netz anschließen	. 15
	4.4	Gerät mit einem Netzwerk verbinden	. 16
	4.5	Drucker am USB-Anschluss anschließen	. 16
		4.5.1 Thermodrucker DPU-S445	
	4.6	PC oder USB-Stick für Datenexport anschließen	. 17
5	Bedi	ienung	. 19
	5.1	Bedienelemente	. 19
		5.1.1 Text eingeben	. 21
	5.2	Küvette einsetzen	. 22
	5.3	Übersicht über den Messablauf	. 23
		5.3.1 Messung vorbereiten	. 23
		5.3.2 Messablauf	. 23
		5.3.3 Wichtige Hinweise für die Messungen	. 27

6	Meth	oden		29
	6.1	Method	le auswählen	29
	6.2	Method	lenbeschreibung Photometrie	30
		6.2.1	Methodengruppe Absorbance	
		6.2.2	Methodengruppe Routine	
		6.2.3	Methodengruppe Basic	
	6.3		lenparameter	
	6.4		lenablauf	
		6.4.1	check parameters	
		6.4.2	measure standards	
		6.4.3	measure samples	
		6.4.4	measure samples: Ergebnisanzeigen	
		6.4.5	process results	
		6.4.6	print & export	
		6.4.7	Messreihe abschließen	
		0.4.7	Medalettie abactitiesett	7,
7	Funkt	tionen .		49
	7.1		nen der Hauptgruppe User	
		7.1.1	Results Memory	
		7.1.2	General Method Parameters	
		7.1.3	Absorbance Spectra Library	
		7.1.4	Device Settings	
		7.1.5	Device Calibration	
		7.1.6	Info	
8	Instar		ng	
	8.1	Reinigu	ıng	59
		8.1.1	Küvettenschachtabdeckung reinigen	
	8.2	Desinfe	ktion/Dekontamination	61
	8.3	Gerät ü	berprüfen	61
		8.3.1	Photometereinheit überprüfen	61
		8.3.2	Selbsttest des Geräts	65
	8.4	Sicheru	ingen ersetzen	66
	8.5	Dekonta	amination vor Versand	66
9	Duckl	ام ما معرد	h	,,
9			bung	
	9.1	•	eine Fehler	
	9.2		neldungen	
	9.3	∟rgebn	iskennzeichnungen	/2
10	Trans	port. La	gerung und Entsorgung	75
	10.1	-	ort	
	10.1	•	ng	
	10.2	_	jung	
		9	,g	

11	Techi	nische Daten	77
	11.1	Stromversorgung	77
	11.2	Umgebungsbedingungen	77
	11.3	Gewicht/Maße	
	11.4	Photometrische Eigenschaften	78
	11.5	Weitere technische Parameter	
	11.6	Anwendungsparameter	80
12	Ausw	verteverfahren	81
	12.1	Extinktionswerte	81
		12.1.1 Blank	81
		12.1.2 Background-Korrektur	81
		12.1.3 Küvettenkorrektur	82
	12.2	Transmission	82
	12.3	Auswertung mit Faktor oder Standard	83
	12.4	Auswertung mit Standardkurve/-gerade	84
	12.5	Verdünnung	85
	12.6	Spezielle Auswerteverfahren für Nukleinsäuren und Protein UV	85
		12.6.1 Ratio A260/A280 und Ratio A260/A230	85
		12.6.2 Umrechnung in molare Konzentrationen und Nukleinsäuremengen	86
		12.6.3 Berechnung des Faktors für Protein in "General Method Parameter"	87
13	Beste	ellinformationen	89
	Zorti	fikato	01

Inhaltsverzeichnis

6 Eppe

Eppendorf BioPhotometer® D30 Deutsch (DE)

1 Anwendungshinweise

1.1 Anwendung dieser Anleitung

- ▶ Lesen Sie diese Bedienungsanleitung vollständig, bevor Sie das Gerät das erste Mal in Betrieb nehmen. Beachten Sie ggf. die Gebrauchsanweisungen des Zubehörs.
- ▶ Diese Bedienungsanleitung ist Teil des Produkts. Bewahren Sie sie gut erreichbar auf.
- ▶ Fügen Sie diese Bedienungsanleitung bei Weitergabe des Geräts an Dritte bei.
- ▶ Die aktuelle Version der Bedienungsanleitung in den verfügbaren Sprachen finden Sie auf unserer Internetseite www.eppendorf.com/manuals.

1.2 Gefahrensymbole und Gefahrenstufen

1.2.1 Gefahrensymbole

Die Sicherheitshinweise in dieser Anleitung haben die folgenden Gefahrensymbole und Gefahrenstufen:

4	Stromschlag		Explosionsgefährliche Stoffe
	Giftige Stoffe	A	Gefahrenstelle
*	Sachschaden		

1.2.2 Gefahrenstufen

GEFAHR	Wird zu schweren Verletzungen oder zum Tod führen.
WARNUNG	Kann zu schweren Verletzungen oder zum Tod führen.
VORSICHT	Kann zu leichten bis mittelschweren Verletzungen führen.
ACHTUNG	Kann zu Sachschäden führen.

1.3 Darstellungskonventionen

Darstellung	Bedeutung
1.	Handlungen in vorgegebener Reihenfolge
2.	
→	Handlungen ohne vorgegebene Reihenfolge
•	Liste
0	Zusätzliche Informationen

Eppendorf BioPhotometer® D30 Deutsch (DE)

1.4 Abkürzungen

Α

Absorbance - Extinktion

DNA

Deoxyribonucleic acid – Desoxyribonukleinsäure (DNS)

dsDNA

double stranded DNA - doppelsträngige DNS

М

mol/L (molar)

OD600

Optische Dichte bei der Wellenlänge 600 nm

RNA

Ribonucleic acid – Ribonukleinsäure (RNS)

SSDNA

single stranded DNA – einzelsträngige DNS

T

Transmission: Die als Transmission (T) bezeichnete Lichtdurchlässigkeit wird als Quotient aus I (aus der Küvette austretendes Licht) und I $_0$ (in die Küvette eintretendes Licht) berechnet: $T = I/I_0$

UV

Ultraviolette Strahlung

Vis

Visible light – sichtbares Licht

VK

Variationskoeffizient (Standardabweichung/Mittelwert), in Prozent

2 Allgemeine Sicherheitshinweise

2.1 Bestimmungsgemäßer Gebrauch

Einsatzgebiet des BioPhotometer D30 ist das Forschungslabor in Molekularbiologie, Biochemie und Zellbiologie. Das BioPhotometer D30 ist ausschließlich für die Verwendung in Innenräumen bestimmt. Die länderspezifischen Sicherheitsanforderungen für den Betrieb elektrischer Geräte im Laborbereich müssen eingehalten werden.

Das BioPhotometer D30 dient zur photometrischen Konzentrationsbestimmung von Biomolekülen in Flüssigkeiten sowie für Trübungsmessungen von mikrobiologischen Kulturen im Routinelabor.

Verwenden Sie ausschließlich Eppendorf-Zubehör oder von Eppendorf empfohlenes Zubehör.

2.2 Anforderung an den Anwender

Gerät und Zubehör dürfen nur von ausgebildetem Fachpersonal bedient werden.

Lesen Sie vor der Anwendung die Bedienungsanleitung und die Gebrauchsanweisung des Zubehörs sorgfältig und machen Sie sich mit der Arbeitsweise des Geräts vertraut.

2.3 Gefährdungen bei bestimmungsgemäßem Gebrauch

2.3.1 Personenschaden

GEFAHR! Stromschlag durch eintretende Flüssigkeit.

- ▶ Schalten Sie das Gerät aus und trennen Sie es vom Stromnetz, bevor Sie mit der Reinigung oder Desinfektion beginnen.
- Lassen Sie keine Flüssigkeiten in das Gehäuseinnere gelangen.
- ▶ Führen Sie keine Sprühreinigung/Sprühdesinfektion am Gehäuse durch.
- ▶ Schließen Sie das Gerät nur innen und außen vollständig getrocknet wieder an das Stromnetz an.

GEFAHR! Explosionsgefahr.

- ▶ Betreiben Sie das Gerät nicht in Räumen, in denen mit explosionsgefährlichen Stoffen gearbeitet wird.
- ▶ Bearbeiten Sie mit diesem Gerät keine explosiven oder heftig reagierenden Stoffe.
- ▶ Bearbeiten Sie mit diesem Gerät keine Stoffe, die eine explosive Atmosphäre erzeugen können.

WARNUNG! Stromschlag durch Schäden am Gerät oder Netzkabel.

- ▶ Schalten Sie das Gerät nur ein, wenn Gerät und Netzkabel unbeschädigt sind.
- ▶ Nehmen Sie nur Geräte in Betrieb, die fachgerecht installiert oder instand gesetzt wurden.
- ▶ Trennen Sie das Gerät im Gefahrenfall von der Netzspannung. Ziehen Sie den Netzstecker aus dem Gerät oder der Steckdose. Verwenden Sie die vorgesehene Trennvorrichtung (z. B. Notschalter im Labor).

WARNUNG! Schaden durch UV-Strahlung.

Mikroliterküvetten wie z.B. Hellma® TrayCell (oder Mikroliterküvetten ähnlicher Bauart) leiten die Strahlung der Lichtquelle innerhalb der Küvette um, sodass die Strahlung der Lichtquelle bei nicht geschlossenem Deckel nach oben austreten kann.

 Vergewissern Sie sich vor dem Start einer Messung, dass der Deckel auf der Mikroliterküvette aufliegt.

WARNUNG! Gesundheitsschädigung durch giftige, radioaktive oder aggressive Chemikalien sowie durch infektiöse Flüssigkeiten und pathogene Keime.

- Beachten Sie die nationalen Bestimmungen zum Umgang mit diesen Substanzen, die biologische Sicherheitsstufe Ihres Labors sowie die Sicherheitsdatenblätter und Gebrauchshinweise der Hersteller.
- ▶ Tragen Sie Ihre persönliche Schutzausrüstung.
- ▶ Entnehmen Sie umfassende Vorschriften zum Umgang mit Keimen oder biologischem Material der Risikogruppe II oder höher dem "Laboratory Biosafety Manual" (Quelle: World Health Organization, Laboratory Biosafety Manual, in der jeweils aktuell gültigen Fassung).

WARNUNG! Gesundheitsgefahr durch kontaminiertes Gerät und Zubehör.

▶ Dekontaminieren Sie Gerät und Zubehör, vor dem Lagern oder Versenden.

VORSICHT! Sicherheitsmängel durch falsche Zubehör- und Ersatzteile.

Zubehör- und Ersatzteile, die nicht von Eppendorf empfohlen sind, beeinträchtigen die Sicherheit, Funktion und Präzision des Geräts. Für Schäden, die durch nicht empfohlene Zubehör- und Ersatzteile oder unsachgemäßen Gebrauch verursacht werden, wird jede Gewährleistung und Haftung durch Eppendorf ausgeschlossen.

▶ Verwenden Sie ausschließlich von Eppendorf empfohlenes Zubehör und Original-Ersatzteile.

2.3.2 Geräteschaden

ACHTUNG! Schäden durch aggressive Chemikalien.

- ▶ Verwenden Sie am Gerät und Zubehör keine aggressiven Chemikalien wie z. B. starke und schwache Basen, starke Säuren, Aceton, Formaldehyd, halogenierte Kohlenwasserstoffe oder Phenol.
- ▶ Reinigen Sie das Gerät bei Verunreinigungen durch aggressive Chemikalien umgehend mit einem milden Reinigungsmittel.

ACHTUNG! Geräteschaden durch Begasung mit aggressiven Chemikalien.

▶ Führen Sie am Gerät keine Desinfektion durch Begasung durch.

ACHTUNG! Korrosion durch aggressive Reinigungs- und Desinfektionsmittel.

- ▶ Verwenden Sie weder ätzende Reinigungsmittel noch aggressive Lösungs- oder schleifende Poliermittel.
- ▶ Inkubieren Sie das Zubehör nicht längere Zeit in aggressiven Reinigungs- oder Desinfektionsmitteln.

ACHTUNG! Schäden an elektronischen Bauteilen durch Kondensatbildung.

Nach dem Transport des Geräts von einer kühlen in eine wärmere Umgebung kann sich im Gerät Kondensat bilden.

▶ Warten Sie nach dem Aufstellen des Geräts mindestens 3 h. Schließen Sie das Gerät erst danach an das Stromnetz an.

ACHTUNG! Beeinträchtigung der Funktion durch mechanische Schäden.

▶ Stellen Sie nach einer mechanischen Beschädigung des Gerätes durch eine Überprüfung sicher, dass die Mess- und Auswertefunktionen des Gerätes korrekt ablaufen.

ACHTUNG! Schäden durch Überhitzung.

- ▶ Stellen Sie das Gerät nicht in der Nähe von Wärmequellen (z.B. Heizung, Trockenschrank) auf.
- ▶ Setzen Sie das Gerät keiner direkten Sonneneinstrahlung aus.
- ▶ Gewährleisten Sie eine ungehinderte Luftzirkulation. Halten Sie um alle Lüftungsschlitze einen Abstand von mindestens 5 cm frei.

ACHTUNG! Sachschäden durch falsche Anwendung.

- ▶ Setzen Sie das Produkt nur für den in der Bedienungsanleitung beschriebenen bestimmungsgemäßen Gebrauch ein.
- ▶ Achten Sie auf eine ausreichende Materialbeständigkeit bei der Anwendung von chemischen Substanzen.
- ▶ Wenden Sie sich in Zweifelsfällen an den Hersteller dieses Produktes.

ACHTUNG! Schäden durch unsachgemäße Verpackung.

Die Eppendorf AG haftet nicht für Schäden durch unsachgemäße Verpackung.

▶ Lagern und transportieren Sie das Gerät nur in der Originalverpackung.

ACHTUNG! Schäden durch unsachgemäße Reinigung des Küvettenschachts.

- ▶ Reinigen Sie den Küvettenschacht nur mit einem feuchten Wattestäbchen .
- ▶ Lassen Sie keine Flüssigkeit in den Küvettenschacht gelangen.
- ▶ Fassen Sie nicht mit dem Finger in den Küvettenschacht.

2.4 Hinweise zur Produkthaftung

In den folgenden Fällen kann der vorgesehene Schutz des Geräts beeinträchtigt sein. Die Haftung für entstehende Sach- und Personenschäden geht dann auf den Betreiber über:

- Das Gerät wird nicht entsprechend der Bedienungsanleitung benutzt.
- Das Gerät wird außerhalb des bestimmungsgemäßen Gebrauchs eingesetzt.
- Das Gerät wird mit Zubehör oder Verbrauchsartikeln verwendet, die nicht von der Eppendorf AG empfohlen werden.
- Das Gerät wird von Personen, die nicht von der Eppendorf AG autorisiert wurden, gewartet oder instand gesetzt.
- Am Gerät werden vom Anwender unautorisiert Änderungen vorgenommen.

2.5 Sicherheitshinweise am Gerät

Darstellung	Bedeutung	Ort
	Gefahrenstelle	Rückseite des Geräts
<u>\(\frac{1}{2} \) \(\frac{1}{2} \)</u>	 Beachten Sie die Bedienungsanleitung. 	
	3 0	Unterseite des Geräts
Gerät nach dem Öffnen justieren!	Wenn das Gerät geöffnet wird, muss es neu justiert werden.	Officerseite des Gerats
Adjust device after opening!	▶ Gerät nicht öffnen.	

3 Produktbeschreibung

3.1 Produktübersicht

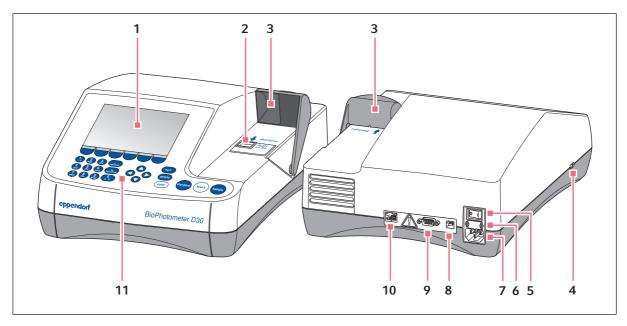


Abb. 3-1: BioPhotometer D30: Vorder- und Rückansicht

- 1 Display
- 2 Küvettenschacht
- 3 Küvettenschachtabdeckung
- 4 USB-Anschluss für USB-Stick und Drucker
- 5 Netzschalter
- 6 Sicherungshalter

- 7 Netzanschluss
- 8 USB-Anschluss für PC
- 9 Anschluss RS-232-Drucker
- 10 Anschlussbuchse Ethernet
- 11 Bedienelemente

Das Typenschild befindet sich an der Geräteunterseite links hinten.

3.2 Lieferumfang

Anzahl	Beschreibung
1	BioPhotometer D30
1	Netzkabel
4	4 UVetten Original Eppendorf Kunststoffküvette, einzeln verpackt, PCR clean, Protein-free
1	Bedienungsanleitung, mehrsprachig

3.3 Produkteigenschaften

Das BioPhotometer D30 ist ein UV-VIS-Photometer für die Messung von Flüssigkeiten in Küvetten. Da die Messdaten bei festen Wellenlängen erhoben werden, eignet sich das Gerät besonders für Routineanwendungen im molekularbiologischen, biotechnologischen, biochemischen und zellbiologischen Bereich in Forschung und Entwicklung.

3.3.1 Methoden

Vorprogrammierte Methoden und Methoden-Templates

- · Konzentrationsbestimmung von Nukleinsäuren und Proteinen
- Bestimmung der Bakteriendichte durch Trübungsmessung: Methode OD 600
- Methoden-Templates für unterschiedliche Mess- und Auswerteverfahren:
 - schnelle Extinktionsmessungen
 - Auswertungen mit Faktor, Standard und Standardkurve
- Eigene Methoden können auf Basis der vorprogrammierten Methoden und Templates erstellt werden.
- Methoden für schnelle, einfache Extinktions- und Transmissionsmessungen ohne weitere Auswertung: Methodengruppe *Absorbance*.

3.3.2 Bedienung

Die vorprogrammierten Methoden und Templates sind in übersichtlichen Gruppen zusammengefasst, aus denen Sie schnell Ihre gewünschte Methode auswählen können. Nach Methodenaufruf werden Sie in übersichtlichen Schritten durch den Messablauf geführt. Eine Hilfebox im Display gibt Ihnen bei Bedarf Hinweise. Die 3 Messtasten (standard, blank, sample) ermöglichen den schnellen, direkten Start einer Messung.

3.3.3 Ergebnisausgabe

Das BioPhotometer D30 gibt die Ergebnisse über die Geräteanzeige oder über einen bei Eppendorf erhältlichen Drucker aus. Über den USB-Anschluss können Sie Ergebnisdaten aus dem Gerät auf einen USB-Stick, einen Drucker oder direkt auf einen PC übertragen. Wenn das Gerät mit einem Netzwerk verbunden ist, können die Ergebnisse auf einem Netzwerkdrucker ausgedruckt oder per E-Mail verschickt werden. Es ist nicht möglich die Ergebnisse auf einem Netzlaufwerk zu speichern.

3.3.4 Selbsttest des Geräts

Direkt nach dem Einschalten überprüft das Gerät selbsttätig die Funktion der Photometereinheit. Um das Gerät umfassender zu prüfen, rufen Sie die Funktion **Device calibration** auf (siehe *Selbsttest des Geräts auf S. 65*).

4 Installation

4.1 Installation vorbereiten

- ▶ Heben Sie den Transportkarton und das Verpackungsmaterial für einen späteren sicheren Transport oder für eine Lagerung auf.
- ▶ Kontrollieren Sie anhand der Angaben zum Lieferumfang die Vollständigkeit der Lieferung (siehe *Lieferumfang auf S. 13*).
- ▶ Prüfen Sie alle Teile auf eventuelle Transportbeschädigungen.

4.2 Standort wählen

Wählen Sie den Standort für das BioPhotometer D30 nach folgenden Kriterien:

- 2 Steckdosen mit Schutzleiter für das BioPhotometer D30 und für den Drucker.
- Fester Labortisch mit waagerechter Arbeitsplatte.
 Platzbedarf des Gerätes: 50 cm (mit Drucker: 75 cm) Breite, 50 cm Tiefe.
- Temperatur: 15 °C bis 35 °C.
- Vermeiden Sie Temperaturschwankungen (z. B. durch geöffnete Fenster).
- Vermeiden Sie direktes Sonnenlicht.
- Luftfeuchtigkeit: 25 % bis 70 % relative Feuchtigkeit.

Achten Sie darauf, dass keine Gegenstände unter dem Gerät liegen (z. B. lose Blätter, Hefte), die die Luftzufuhr behindern können.

4.3 Gerät an das Netz anschließen

- 1. Stellen Sie das BioPhotometer D30 auf eine geeignete Arbeitsfläche.
- 2. Überzeugen Sie sich, dass Netzspannung und Netzfrequenz mit den Angaben auf dem Typenschild übereinstimmen.
- 3. Verbinden Sie das Gerät mit dem Stromnetz und schalten Sie es mit dem Netzschalter ein.
- 4. Entfernen Sie die Schutzfolie vom Display.

4.4 Gerät mit einem Netzwerk verbinden

Die Verbindung des Geräts mit einem Netzwerk ist optional. Sie können das Gerät auch ohne Netzwerkverbindung betreiben.

Informationen zu Netzwerkeinstellungen (siehe Device Settings auf S. 55)

Voraussetzung

Ethernet-Kabel (RJ45)

- 1. Verbinden Sie das Ethernet-Kabel mit der Anschlussbuchse des Netzwerks.
- 2. Verbinden Sie das Ethernet-Kabel mit der Anschlussbuchse Ethernet **10** (siehe *Produktübersicht auf S. 13*).

Netzwerkdrucker

Ein Netzwerkdrucker wird unter folgenden Voraussetzungen automatisch vom Gerät erkannt:

- Drucker befindet sich im gleichen Netzwerksegment wie das Gerät.
- Drucker unterstützt das Zeroconf-Protokoll.
- Drucker ist PostScript-fähig.

4.5 Drucker am USB-Anschluss anschließen

4.5.1 Thermodrucker DPU-S445

Voraussetzung

Auf dem Gerät ist die Software-Version 3.4.4.0 oder höher installiert.

In den Druckereinstellungen ist der Thermodrucker DPU-S445 ausgewählt (siehe Device Settings auf S. 55).

Schließen Sie den Thermodrucker DPU-S445 an den USB-Anschluss für Drucker an.

- 1. Verbinden Sie das Druckerkabel mit dem USB-Anschluss für Drucker **4** (siehe *Produktübersicht auf S. 13*).
- 2. Verbinden Sie das Druckerkabel mit dem Drucker.
- 3. Schließen Sie den Drucker über das mitgelieferte Steckernetzteil und Netzkabel (Zubehör des Druckers) an das Stromnetz an und schalten Sie ihn ein.

Hinweise zum Drucker finden Sie in der Bedienungsanleitung des Druckers.

4.6 PC oder USB-Stick für Datenexport anschließen

Sie können einen USB-Stick, **FAT-32-formatiert**, an den USB-Anschluss **4** anschließen (siehe *Produktübersicht auf S. 13*).

Alternativ können Sie das Gerät für den Datenexport über ein USB-Kabel direkt mit einem PC verbinden:

Voraussetzung

- PC mit Windows, Version XP, SP2 oder höhere Version.
- USB-Kabel mit je einem Stecker Typ A und Typ B.
- ▶ Verbinden Sie das Gerät mit dem PC über das USB-Kabel am USB-Anschluss **8** (siehe *Produktübersicht auf S. 13*).

- Sie benötigen keine spezielle PC-Software für die Datenübertragung: Übertragene Datenpakete werden vom PC wie ein USB-Stick als Wechseldatenträger erkannt. Um die Daten sichtbar zu machen, müssen Sie das angemeldete Datenpaket nur öffnen.
- Die Übertragung von Daten auf den USB-Stick oder an den PC starten Sie nach Abschluss der Messreihe im Methodenschritt **print & export** (siehe *print & export auf S. 44*).

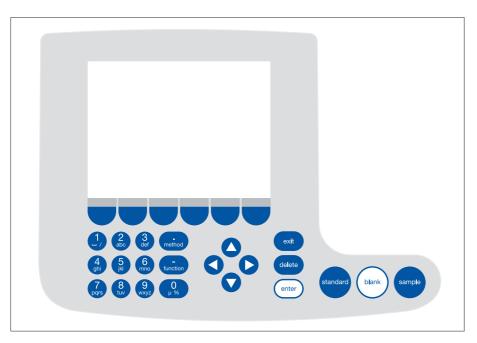
Installation

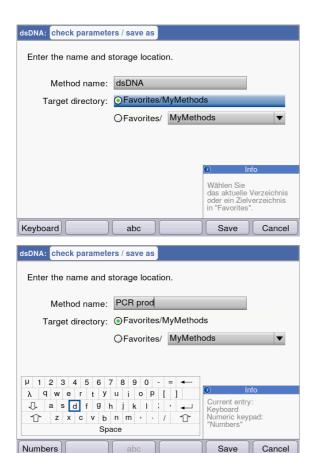
18

Eppendorf BioPhotometer® D30 Deutsch (DE)

5 Bedienung

5.1 Bedienelemente




Abb. 5-1: Bedienelemente des BioPhotometer D30

Taste	Funktion
1 2 3 interest of the second o	Tastenblock: Zahlen und Text eingeben. Tasten 1 bis 9 sowie 0: Bei Texteingabe können Sie neben Ziffern auch Buchstaben und Sonderzeichen durch mehrmaliges Drücken der Taste eingeben. Alternativ wechseln Sie mit [Keyboard] zu einer eingeblendeten Tastatur.
method	Außerhalb von Eingabefeldern: Methodenauswahl aufrufen.
function	Außerhalb von Eingabefeldern: Funktionsauswahl aufrufen.
Edit	Softkey: Funktionen anwählen. Die Belegung der Taste wechselt mit dem Software-Dialog. Die aktuelle Funktion wird im Display direkt über der Taste angezeigt.

Taste	Funktion
	Cursor nach links, rechts, oben, unten bewegen. • Navigieren zwischen Eingabefeldern.
	 Cursor-Tasten und innerhalb eines Eingabefeldes: Innerhalb der Zeichenfolge navigieren.
000	 Tasten ound in einer Ergebnisanzeige: Zwischen den Probenergebnissen der Messreihe navigieren.
	 Tasten und innerhalb eines Graphen: Auf der x-Achse des Graphen navigieren, um z.B. in einem Scan die Wellenlängen-abhängigen Extinktionswerte anzuzeigen.
exit	Aktuelle Auswahl in die nächsthöhere Ebene verlassen.
delete	Eingabe löschen. Innerhalb einer Zeichenfolge wird das Zeichen links vom Cursor gelöscht
enter	Ausgewählte Methode oder Funktion aufrufen.Auswahlliste öffnen.Eingabe oder Auswahl bestätigen.
standard	Standardmessung starten.
blank	Leerwertmessung starten.
sample	Probenmessung starten.

5.1.1 Text eingeben

Texte können Sie bei der Vergabe von Methodennamen und Ergebniseinheiten eingeben. Einschränkung: Für Methodennamen sind nur Ziffern und Buchstaben sowie der Unterstrich "_" erlaubt.

Eingabe über den Tastenblock:

Mit den Cursor-Tasten **○** und **○** navigieren Sie im Eingabefeld und können einzelne Positionen im Namen verändern.

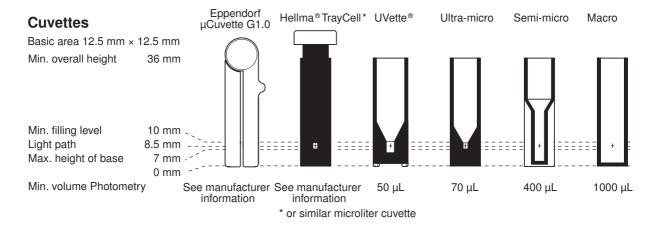
Softkeys:

- [Keyboard]: Tastatur einblenden.
- [abc]: Wechsel zwischen Groß- und Kleinbuchstaben bei Eingabe über den Tastenblock.
- [Save]: Eingegebenen Text speichern.
- [Cancel]: Texteingabe abbrechen.

Eingabe über eingeblendete Tastatur:
Mit den Cursor-Tasten wählen Sie die
eingeblendeten Zeichen aus und bestätigen jeweils
mit der Taste **enter**. Wie bei einer PC-Tastatur
können Sie mit der "Shift"- bzw. der Feststelltaste für
die nächstfolgende bzw. für alle folgenden Eingaben
zwischen Groß- und Kleinschreibung wechseln.
Softkeys:

- [Numbers]: Zur Eingabe über den Tastenblock wechseln.
- [Save]: Eingegebenen Text speichern.
- [Cancel]: Texteingabe abbrechen.

5.2 Küvette einsetzen


In die Küvettenaufnahme können Sie handelsübliche Rechteckküvetten aus Glas oder Kunststoff einsetzen:

• Außenmaße: 12,5 mm × 12,5 mm

• Lichtweghöhe: 8,5 mm über dem Küvettenboden

· Gesamthöhe: mindestens 36 mm

Die Küvetten müssen bei der jeweiligen Messwellenlänge optisch transparent sein. Für Messungen im UV-Bereich bietet Eppendorf mit der UVette eine Kunststoffküvette an, die bei Wellenlängen ab 220 nm transparent und damit auch für die Messung von Nukleinsäuren geeignet ist.

Voraussetzung

- · Küvette ist frei von Verschmutzung durch Staub oder Fingerabdrücke und frei von Kratzern.
- Küvettenschacht ist frei von Partikeln, Staub und Flüssigkeit.
- Messvolumen in der Küvette ist ausreichend. Minimales Messvolumen beachten.
- Messlösung ist frei von Partikeln und Blasen.
- Küvettentemperatur und die Küvettentemperierung sind oberhalb der Temperatur des Taupunktes, der für die Umgebungsbedingungen (Feuchte und Temperatur) gilt.

Die Richtung des Lichtwegs ist mit einem Pfeil auf dem Gehäuse gekennzeichnet.

- 1. Positionieren Sie die Küvette so, dass das optische Fenster der Küvette in Richtung des Lichtwegs zeigt.
- 2. Drücken Sie die Küvette beim Einsetzen gegen einen leichten Widerstand ganz nach unten.

5.3 Übersicht über den Messablauf

5.3.1 Messung vorbereiten

- Schalten Sie das Gerät und gegebenenfalls den Drucker ein.
 Das Gerät führt einen Selbsttest durch (Dauer ca. 1 Minute) und zeigt die Methodenauswahl an.
- 2. Stellen Sie die Küvetten für die Messungen bereit (siehe Küvette einsetzen auf S. 22).
- 3. Stellen Sie die Messlösungen für die Messungen der Leerwerte, ggf. der Standards und der Proben bereit.
- 4. Öffnen Sie die Abdeckung des Küvettenschachts. Während der Messungen kann die Abdeckung geöffnet bleiben.

Messlösungen für Standards und Proben mit geringeren Extinktionen als 0,05 A sollten nicht eingesetzt werden. Die Nachweisgrenze des Geräts liegt zwar wesentlich niedriger, jedoch ist der Einfluss von Störungen aus den Messlösungen (z.B. Partikel, Blasen, Trübungen) auf die Zuverlässigkeit des Ergebnisses bei diesen geringen Extinktionen sehr groß. Weitere Informationen wie z.B. den Userguide Nr. 013 finden Sie auf unserer Internetseite www.eppendorf.com.

5.3.2 Messablauf

5.3.2.1 Methode auswählen

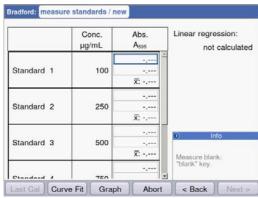
Wählen Sie mit den Cursor-Tasten die gewünschte Methode und rufen Sie die Methode mit der Taste enter auf.

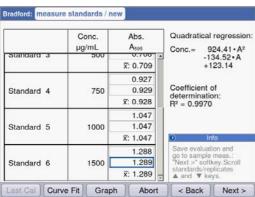
Eine Übersicht und detaillierte Beschreibung der Methoden finden sie im nächsten Kapitel (siehe *Methoden auf S. 29*).

Wizard: Der Wizard am oberen Rand der Anzeige führt Sie schrittweise durch den Methodenablauf. **Hilfebox**: Bei jedem Schritt des Ablaufs erhalten Sie unten rechts in der Anzeige Hilfetexte.

Softkeys: Mit den Softkeys [< Back] und [Next >] bewegen Sie sich im Wizard einen Methodenschritt vor oder zurück.

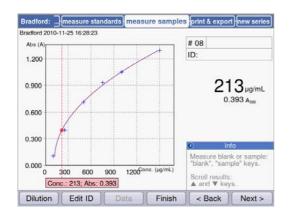
5.3.2.2 Parameter prüfen




Überprüfen Sie die Parametereinstellung. Mit den Softkeys [Page dn] und [Page up] rufen Sie die Seiten der Parameterliste auf. Mit [Edit] ändern und speichern Sie Parameter.

5.3.2.3 Blank und Standards messen

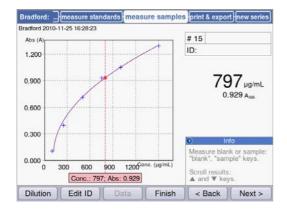
Bei Auswertung ohne Standards (z.B. DNA-Messungen) entfällt dieser Methodenschritt.



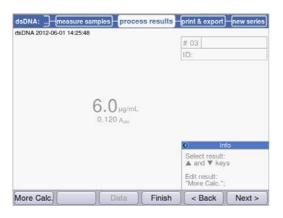
- 1. Messen Sie zunächst einen Leerwert (Taste blank).
- 2. Messen Sie der Reihe nach alle Standards (Taste **standard**).

In der Anzeige ist jeweils der nächste zu messende Standard markiert. Mit den Softkeys [Graph] bzw. [Table] können Sie die Ergebnisansicht wechseln.

 Mit [Next] akzeptieren Sie die aus den Standardergebnissen errechnete Auswertung.


5.3.2.4 Proben messen

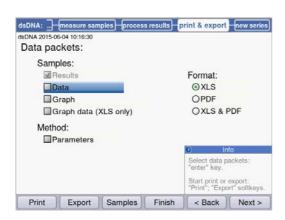
Mit der Taste sample messen Sie der Reihe nach Ihre Proben.


Leerwertergebnisse bleiben für eine Messreihe gespeichert. Eine neue Leerwertmessung ist aber jederzeit möglich.(In der hier gezeigten Abbildung eines Messablaufs mit Auswertung über Standardkurve wird zusätzlich zum Probenergebnis der Graph der Standardauswertung angezeigt.)

5.3.2.5 Methode abschließen

- Drücken Sie [Finish], um die Messreihe zu beenden und zur Methodenauswahl zurückzukehren.
- Schalten Sie nach Abschluss aller Messungen das Gerät aus und schließen Sie die Küvettenschachtabdeckung, um den Küvettenschacht vor Verschmutzung zu schützen.

5.3.2.6 Optional: Ergebnisse nachbearbeiten



Bei den Methoden der Methodengruppe *Nucleic acids* können Sie im Methodenschritt **process results** Ergebnisse nachbearbeiten.

▶ Wählen Sie mit den Cursor-Tasten ○ und ○ gezielt Ergebnisse der Messreihe für die Nachbearbeitung aus.

Softkey **More Calc.**: Konzentrationsergebnisse in molare Konzentrationen oder in Nukleinsäuremengen (Masseneinheit oder Moleinheit) umrechnen.

5.3.2.7 Drucken und exportieren

- 1. Stellen Sie Datenpakete für alle oder für ausgewählte Proben zusammen.
- Drucken Sie die Daten aus, speichern Sie sie auf einem USB-Stick, übertragen Sie sie über ein USB-Kabel an einen PC oder exportieren Sie sie per E-Mail.

5.3.3 Wichtige Hinweise für die Messungen

Beachten Sie bei jeder Messung:

- Bei Kunststoffküvetten: Wie viele Messungen nacheinander können in der Küvette zuverlässig durchgeführt werden?
- Messen Sie vor Proben- oder Standardmessungen den Leerwert der Küvette, um neben dem Reagenzleerwert auch den Küvettenleerwert zu kompensieren.
- Leerwertergebnisse bleiben für eine Messreihe gespeichert, eine neue Leerwertmessung ist aber jederzeit auch zwischen Probenmessungen möglich.
- Die angezeigten Extinktionswerte entsprechen immer den direkt gemessenen Werten. Verdünnungs- oder Küvettenfaktor sowie Background-Extinktionen werden erst für die anschließende Ergebnisberechnung einbezogen (siehe *Extinktionswerte auf S. 81*).
- Die Dauer vom Start einer Messung bis zur Anzeige eines Messergebnisses beträgt typischerweise ca. 2 bis 3 Sekunden. Wenn (bei hohen Extinktionswerten) wenig Licht auf den Empfänger gelangt, kann die Messzeit automatisch auf bis zu 9 Sekunden verlängert werden, um die Präzision der Messung zu erhöhen.
- Achten Sie darauf, dass die gemessenen Extinktionswerte die Obergrenze des photometrischen Messbereichs nicht überschreiten. Verwerfen Sie in diesem Fall das Messergebnis. Die Obergrenze des photometrischen Messbereichs ist nicht nur von der Wellenlänge (siehe *Photometrische Eigenschaften auf S. 78*), sondern auch vom Küvettenleerwert abhängig. Ultramikroküvetten mit kleiner Blende wie **TrayCell** (Hellma) können einen Küvettenleerwert bis ca. A = 1 besitzen. Um diesen Betrag wird der verfügbare photometrische Messbereich reduziert. Den Küvettenleerwert können Sie abschätzen, wenn Sie die mit demineralisiertem Wasser gefüllte Küvette als Probe gegen den leeren Küvettenschacht als Blank messen. Der Küvettenleerwert der Eppendorf μCuvette G1.0 ist zu vernachlässigen (nahe A = 0).
- Entfernen Sie nach der Messung die Messlösung vollständig, bevor Sie die nächste Messlösung einfüllen, um Verschleppung zu minimieren. Wenn aufgrund von hohen Konzentrationsunterschieden Verschleppung von einer Probe zur nächsten Probe zu erwarten ist, spülen Sie die Küvette zwischen den Messungen.
- Bei Temperaturunterschieden zwischen Lampe und Umgebung kann photometrische Drift auftreten. Bringen Sie daher ein Gerät, das aus einer kälteren Umgebung kommt, zunächst auf Umgebungstemperatur.
 - Vermeiden Sie schnelle Temperaturwechsel. Führen Sie bei längeren Messreihen oder bei Messungen nach einem längeren Zeitraum eine neue Leerwertmessung durch.

Bedienung Eppendorf BioPhotometer® D30 Deutsch (DE)

28

6 Methoden

6.1 Methode auswählen

Methoden und Methoden-Templates sind bereits mit Auslieferung vorprogrammiert. Die Methoden sind in Haupt- und Untergruppen geordnet.

Schreibgeschützte Methoden		Die wichtigsten Methoden der Molekularbiologie. Sie können die Parameter zwar verändern, dann aber nur unter neuem Methodennamen abspeichern.
Nicht schreibgeschützte Methoden	**************************************	Sie können die Parameter beliebig verändern und nach Speichern direkt mit der Messung beginnen.
Templates für neue Methoden	X	Jede Methodengruppe enthält ein Template, das zur Erleichterung der Programmierung neuer Methoden bereits mit kompletten Parametersätzen vorprogrammiert ist. Die Parameter können beliebig verändert und unter neuem Namen abgespeichert werden.

Um eine Methode aufzurufen, wählen Sie mit den Cursor-Tasten zunächst die Hauptgruppe, Untergruppe und die Methode aus. Bestätigen Sie jeweils mit **enter**.

Tab. 6-1: Photometrische Methoden

Absorbance	Methoden für schnelle, einfache Extinktions- und Transmissionsmessungen ohne weitere Auswertung.
Routine Häufig genutzte Methoden der Molekularbiologie. Die Methoden sind fe vorprogrammiert. Eine Änderung von Parametern ist aber mit Speichern Namen möglich.	
Basic	Methoden für die Auswertung von Extinktionsmessungen mit Faktor, Standard oder Standardkurve/-gerade.
Favorites	In <i>Favorites</i> können Sie mit <new folder=""></new> eigene Ordner einrichten und Ihre häufig benutzten Methoden in diese Ordner kopieren, um schnell auf diese Methoden zugreifen zu können.

In allen Ordnern können Sie mit < New Method> neue Methoden erstellen.

In *Favorites* können Sie eigene Ordner erstellen (z. B. für personenorientierte Zuordnung), umbenennen und löschen.

Tab. 6-2: Softkeys in der Methodenauswahl

[Cut] und [Paste]	Methoden ausschneiden und einfügen.	
[Copy] und [Paste]	Methoden kopieren und einfügen.	
[Delete]	Methoden löschen.	
[Rename]	Methoden umbenennen.	

Kopierte oder ausgeschnittene Methoden können Sie entweder in einen anderen Ordner unter *Favorites* oder unter neuem Namen in den ursprünglichen Ordner einfügen. Navigieren Sie mit den Cursor-Tasten in die Spalte **Methods** des gewünschten Ordners und drücken Sie [paste] zum Einfügen der Methode.

6.2 Methodenbeschreibung Photometrie

In diesem Kapitel werden die vorprogrammierten Methoden und Methoden-Templates beschrieben.

6.2.1 Methodengruppe *Absorbance*

Single λ

- Extinktionsmessung bei einer Wellenlänge.
- Keine nachgeschaltete Auswertung.
- Bestimmung der Transmission einer Probe möglich.

6.2.2 Methodengruppe Routine

Die Methoden der Gruppe *Routine* sind als feste Methoden vorprogrammiert. Nach Änderung von Methodenparametern in den fest vorprogrammierten Methoden muss daher ein neuer Methodenname vergeben werden.

Nucleic acids

- Konzentrationsbestimmung von Nukleinsäuren durch Messung bei 260 nm und Auswertung über Faktor
- Verschiedene Nukleinsäuremethoden wie dsDNA oder RNA sind vorprogrammiert. Die Parameter unterscheiden sich durch den Faktor.
- Vorprogrammierte Methode für Mikroliterküvetten: Messung von DNA in Probenvolumen im Mikroliterbereich mit Lichtweg 1 mm (mit Mikroliterküvetten wie Eppendorf μCuvette G1.0 oder Hellma® TrayCell).
- Partielle Trübungskorrektur über Parameter **Background** ist voreingestellt.
- Zusatzinformationen zur Reinheit der gemessenen Nukleinsäure: Ratio A260/A280, Ratio A260/A230, eingeschränktes Extinktions-Wellenlängen-Spektrum der Nukleinsäure (in Abständen von 3 nm), Extinktion der Background-Wellenlänge (voreingestellt: 320 nm; die Extinktion der reinen Nukleinsäure sollte hier annähernd Null betragen).
- Umrechnung der Konzentrationen in molare Konzentrationen sowie (nach Eingabe des Probenvolumens) in Nukleinsäuremengen möglich (Methodenschritt: **process results**).

Proteins direct UV

- Konzentrationsbestimmung von Proteinen durch Messung bei 280 nm und Auswertung über Faktor oder Standard.
- Vorprogrammierte Methoden zur direkten Ausgabe der Extinktionen als Ergebnis (*Protein A 280*) sowie zur Auswertung über Albumin-spezifischen Extinktionskoeffizienten (*Albumin A 280*).
- Vorprogrammierte Methode für Mikroliterküvetten: Messung von Protein in Probenvolumen im Mikroliterbereich mit Lichtweg 1 mm (mit Mikroliterküvetten wie Eppendorf μCuvette G1.0 oder Hellma® TrayCell).
- Folgende Zusatzinformationen zur Reinheit der gemessenen Proteins werden angezeigt und können bei Bedarf aus den Messparametern herausgenommen werden:
 - Extinktions-Wellenlängen-Spektrum des Proteins
 - Extinktion der Background-Wellenlänge (voreingestellt: 320 nm; die Extinktion des reinen Proteins sollte hier annähernd Null betragen).
- Partielle Trübungskorrektur über Parameter Background ist voreingestellt.
- Bei der Methodenprogrammierung wird durch einfache Auswahl des Proteins aus einer vorgegebenen Liste der zugehörige Faktor importiert. Die Definition der Faktoren erfolgt separat in den Funktionen der Gruppe **Gen. method param.** Verschiedene Proteine sind in **Gen. method param.** vorprogrammiert. Weitere können Sie hinzufügen.

Proteins (with reagent)

- Konzentrationsbestimmung von Proteinen durch Messung nach Farbreaktionen und Auswertung über Standards oder Faktor (typisch: Auswertung mit Standardkurve).
- Die Methoden *Bradford, Bradford micro, Lowry, Lowry micro, BCA und BCA micro* sind bereits vorprogrammiert. Je nach Reagenzhersteller muss gegebenenfalls der "Curve fit" (Standardkurventyp) verändert werden.

Bacterial density

- Trübungsmessung zur Bestimmung der Bakteriendichte.
- Messung bei 600 nm ist bereits vorprogrammiert.

Die Messung der Bakteriendichte bei 600 nm ist keine absolute Messung. Es gibt verschiedene Faktoren, die das Ergebnis der Messung beeinflussen können. Ausführliche Informationen finden Sie auf unserer Internetseite www.eppendorf.com

6.2.3 Methodengruppe Basic

Factor, Standard

- Messung bei einer Wellenlänge und Auswertung über Faktor oder Standard.
- Methoden für die Auswertung über Faktor und Standard sind vorprogrammiert.

Calibration curve

- Messung bei einer Wellenlänge und nachfolgende Auswertung mit einer Reihe von 2 bis 12 Standards.
- Verschiedene Auswerteverfahren ("Curve fit") wie lineare Regression, nichtlineare Regression sind
- Grafische und tabellarische Anzeige der Standardergebnisse.
- Nutzung der letzten gespeicherten Standardauswertung ist möglich.
- Eine Methode für die Auswertung mit Standardkurve ist vorprogrammiert.

6.3 Methodenparameter

In diesem Kapitel werden die Parameter für die Programmierung der Methoden erläutert. Die Reihenfolge der Parameter in der Geräteanzeige kann im Vergleich zur Reihenfolge in der Tabelle bei einigen wenigen Methoden leicht verändert sein, um die Parameter in der Anzeige übersichtlich darzustellen. Die Tabelle stellt die Gesamtheit aller für die verschiedenen Methoden verfügbaren Parameter dar. Für die jeweilige Methode wird davon nur ein geringer Teil benötigt und in der Anzeige dargestellt.

Parameter	Eingabe	Erläuterung
Cuvette	Auswahl: 10 5 2 1 0,5 0,2 0,1 mm	Optische Schichtdicke der Küvette. Extinktionswerte werden vom Gerät immer automatisch auf die Schichtdicke 10 mm einer Standardküvette umgerechnet (siehe <i>Extinktionswerte auf S. 81</i>). Faktoren wie "50" für die Berechnung von dsDNA-Konzentrationen müssen daher nicht von Ihnen verändert werden, wenn Sie den Parameter Cuvette verändern.
Wavelength	Auswahl: 230 260 280 320 340 405 490 562 595 600 nm	Messwellenlänge: Auf der Basis der bei dieser Wellenlänge gemessenen Extinktion wird die Konzentration ausgerechnet. Für einige Methodengruppen (z. B. Nucleic acids und Proteins direct UV) sind die Wellenlängen fest vorprogrammiert.
Unit	Auswahl: mg/mL µg/mL ng/ mL pg/mL µg/µL mg/dL µmol/mL nmol/mL pmol/mL pmol/µL U U/mL U/L % Abs A/min Zusätzlich freie Programmierbarkeit weiterer Einheiten in der Funktion General Method Parameters/ Units. Max. 7 Stellen.	Einheit für das Konzentrationsergebnis. Die Auswahl ist bei den fest vorprogrammierten Methoden der Gruppe <i>Routine</i> auf für diese Methoden sinnvolle Einheiten begrenzt.
Calculation	Auswahl: Factor Standard	Auswerteverfahren für die Berechnung der Probenkonzentration aus der gemessenen Extinktion.
Factor	Werteeingabe: Faktor. Grenze: max. 6-stellig einschließlich Dezimalpunkt.	Faktor für die Umrechnung von Extinktionswerten in die Konzentration. Bei der Methodengruppe Factor können Sie auch negative Faktoren eingeben.
Protein	Auswahl: Liste von Proteintypen, die in der Funktion General Method Parameters/Proteins hinterlegt sind.	Nur für die Methodengruppen Proteins direct UV. Bei der Auswahl des Proteins wird aus der Funktion General Method Parameters/Proteins auch der dort programmierte zugehörige Parameter Factor importiert.

Parameter	Eingabe	Erläuterung
Standards	Werteeingabe: Zahl der Standards. Bereich: 1 bis 12.	Zahl der verschiedenen Standardkonzentrationen für die Auswertung mit Standards. Bei einigen Methoden ist der Bereich für die Anzahl der Standards auf einen kleineren Bereich als 1 bis 12 begrenzt.
Replicates	Werteeingabe: Zahl der Replikate pro Standard. Bereich: 1 bis 3.	Zahl der Wiederholungsmessungen für die verschiedenen Standardkonzentrationen.
Std. Conc.	Werteeingabe: Konzentrationswerte der Standards. Grenze: Max. 6-stellig einschließlich Dezimalpunkt.	Je nach Zahl der Standards wird dieser Parameter für alle Standards angeboten (z.B.: Std. Conc. 1, Std. Conc. 2,).
Decimal places	Werteeingabe: Zahl der Nachkommastellen für das Ergebnis. Bereich: 0 bis 3.	Zahl der Nachkommastellen für das berechnete Konzentrationsergebnis.
Show scan	Auswahl: ein I aus	Nur für die Methodengruppen Nucleic acids und Proteins direct UV: Anzeige eines eingeschränkten Scans (Extinktions-Wellenlängen-Graph im Abstand von 3 nm) zusätzlich zum Ergebnis bei der Probenmessung.
A260/A280	Auswahl: ein I aus	Nur für Nukleinsäuren. Anzeige der Ratio A260/A280 zusätzlich zum Ergebnis bei der Probenmessung.
A260/A230	Auswahl: ein I aus	Nur für Nukleinsäuren. Anzeige der Ratio A260/A230 zusätzlich zum Ergebnis bei der Probenmessung.
Background	Auswahl: ein I aus	Nur für die Methodengruppen Nucleic acids und Proteins direct UV: Vor der Ergebnisberechnung einer Probe wird die Extinktion einer Background-Wellenlänge, bei der der zu messende Analyt die Extinktion Null zeigen soll, von der Extinktion der Messwellenlänge subtrahiert. Häufige Anwendung: Partielle Trübungskorrektur bei Messung von Nukleinsäuren (Background-Wellenlänge hierfür: 320 nm oder 340 nm).
Wavelength	Auswahl: 320 340 nm	Wellenlänge, bei der der Background gemessen werden soll. Der zu messende Analyt sollte hier in reiner Form den Extinktionswert Null haben.

Parameter	Eingabe	Erläuterung
Autoprint	Auswahl: ein I aus	Ausdruck eines Messergebnisses direkt nach der Messung mit dem Thermodrucker. Es werden nur die wesentlichen Ergebnisdaten ausgedruckt. Für die Ausgabe detaillierterer Daten können Sie zum Abschluss der Messserie im Methodenschritt print & export die gewünschten Datenpakete zusammen stellen und ausdrucken.
Transmission	Auswahl: ein aus	Wird der Parameter Calculate Transmission ausgewählt, wird die Transmission (in %) der Probe angezeigt.

6.4 Methodenablauf

Der "Wizard" am oberen Rand der Anzeige führt Sie durch den Methodenablauf. Der jeweils aktive Methodenschritt ist hervorgehoben.

Ein Methodenablauf umfasst maximal 5 Schritte. Der jeweils aktive Schritt ist optisch hervorgehoben. Nach dem letzten Schritt **print & export** einer Messreihe wird als weiterer Schritt der Start einer neuen Messreihe angeboten. Diese beginnt wieder mit der Probenmessung.

Methodenschritt	Erläuterung	
check parameters	Methodenparameter überprüfen. Änderung bei Bedarf.	
measure standards	Nur bei Methoden mit Standardauswertung: Standards messen und auswerten. Alternativ Nutzung der zuletzt gespeicherten Standardauswertung möglich.	
measure samples	Proben messen	
process results	Nur bei Methoden der Gruppe Nucleic acids: Ergebnisse nachbearbeiten (Umrechnung der Konzentrationsergebnisse).	
print & export	Datenpakete für Druck oder Export der Daten zusammenstellen.	

Mit den Softkeys [Next >] und [< Back] navigieren Sie zwischen den Methodenschritten. Mit [Abort] und [Finish] können sie den Messablauf abbrechen bzw. beenden. Der Name dieses Softkeys wechselt nach der ersten Probenmessung von [Abort] auf [Finish].

6.4.1 check parameters

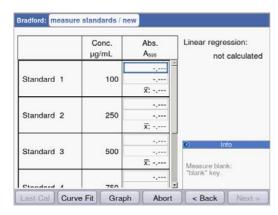
Softkeys

- [Page dn] und [Page up]: Zwischen den 1 bis 3 Parameterseiten wechseln.
- [Edit]: In den Editiermodus für Parameter wechseln.

Editiermodus für Parameter:

Geänderte Parameter werden mit einem roten Stern markiert, solange die Änderung nicht gespeichert wurde.

Softkeys

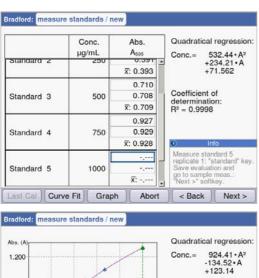

- [Save] und [Save as]: Änderungen speichern. Bei [Save as] müssen Sie der Methode einen neuen Namen geben. Das ist immer der Fall, wenn Sie die von Eppendorf vorprogrammierten Methoden der Gruppe *Routine* ändern.
- [Cancel]: Editiermodus ohne Speicherung der Änderungen verlassen.

Speichern der Methode unter neuem Namen: Sie können die Methode entweder im selben Ordner speichern, in dem Sie die Methode aufgerufen haben, oder in der Methodengruppe *Favorites* in einem frei wählbaren Ordner speichern.

Den Namen (maximal 20-stellig) können Sie über eine eingeblendete Tastatur (Softkey [Keyboard]) oder direkt über den Tastenblock (siehe *Text eingeben auf S. 21*) eingeben.

Nach dem Speichern gelangen sie zurück in die Anzeige **check parameters**.

6.4.2 measure standards


Der erste zu messende Standard ist in der Anzeige markiert. Messen Sie nach dem Leerwert (Taste blank) der Reihe nach alle Standards (Taste standard).

Wenn Sie mehr als ein Replikat pro Standard messen, wird der Mittelwert für jeden Standard automatisch errechnet und angezeigt.

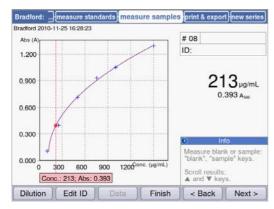

Mit den Cursor-Tasten • und • können Sie auch gezielt bestimmte Standards zur Messung auswählen. Auch eine Neumessung einzelner Standards ist so möglich.

Softkeys

- [Last cal]: Die zuletzt gespeicherte Standardauswertung für diese Methode aufrufen, um diese für Probenmessungen zu nutzen.
- [Curve fit]: Verfahren zur Standardauswertung auswählen. Sie können das Verfahren auch nachträglich ändern, solange das Ergebnis nicht gespeichert wurde. Hinweise zur Auswahl des Auswerteverfahrens finden Sie im Kapitel Auswerteverfahren (siehe *Auswertung mit Standardkurve/-gerade auf S. 84*).
- [Graph]: In die grafische Anzeige der Standardergebnisse wechseln.

Sobald die minimale Zahl von Ergebnissen für die Auswertung mit dem gewählten Verfahren (Curve fit) vorliegt, wird das Auswertungsergebnis im rechten Teil der Anzeige dargestellt. Eine vorzeitige Speicherung der Auswertung und Wechsel zur Probenmessung über die Taste [Next >] ist dann möglich.

Grafische Ansicht der Standardauswertung.


Mit den Cursor-Tasten
und
navigieren Sie zwischen den Standards, um die Ergebnisse anzuzeigen. Bei mehr als einem Replikat pro Standard können Sie mit
und
zwischen den Replikatergebnissen wechseln. Auch aus der grafischen Anzeige können Sie einzelne Standards anwählen und messen oder neu messen.

Softkeys

- [Table]: In die tabellarische Anzeige der Standardergebnisse wechseln.
- [Next >]: Standardauswertung speichern und zur Probenmessung wechseln.

6.4.3 measure samples

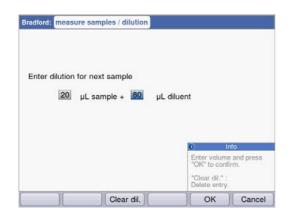
Mit der Taste **sample** messen Sie der Reihe nach Ihre Proben. Leerwertergebnisse bleiben für eine Messreihe gespeichert, eine neue Leerwertmessung ist aber jederzeit möglich. Mit den Tasten ound können Sie zwischen den bisher in der Messreihe erzielten Probenergebnissen navigieren.

Ergebnisanzeige:

- Das Konzentrationsergebnis (6-stellig mit Fließkomma) wird deutlich hervorgehoben.
- · Mit Grafik: Ergebnis rechts in der Anzeige.
- Ohne Grafik: Ergebnis zentral in der Anzeige.
- Zusätzlich zum Ergebnis wird der zugrunde liegende Extinktionswert kleiner angezeigt.

Weitere Daten

- oben rechts; 1. Zeile:
 - Probennummer: wird fortlaufend gezählt und für jede neue Messreihe wieder auf "1" gesetzt. Probenverdünnung (sofern eingegeben)
- oben rechts; 2. Zeile:
 Probenidentifikation (ID) (sofern eingegeben)
- Probenidentifikation (ID) (sofern eingegebeoben links:
- Dateiname, unter dem die Daten im Methodenschritt **print and export** als Excel-Datei exportiert werden (siehe S. 44).


Softkeys

- [Dilution]: Probenverdünnung eingeben.
- [Edit ID]: Proben-ID eingeben
- [Data]: Zusätzliche Ergebnisdaten anzeigen (nicht bei allen Methoden).
- [Finish]: Messreihe beenden und zur Methodenauswahl zurückkehren.

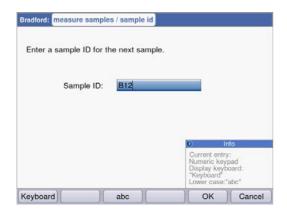
Die angezeigten Extinktionswerte entsprechen immer den direkt gemessenen Werten. Verdünnungs- oder Küvettenfaktor sowie Backgroundextinktionen werden erst für die anschließende Ergebnisberechnung einbezogen (siehe *Extinktionswerte auf S. 81*).

Verdünnung eingeben

Der Softkey [Dilution] ist aktiviert, nachdem der Leerwert (Taste **blank)** gemessen worden ist.

- 1. Drücken Sie den Softkey [Dilution].
- Geben Sie die Volumina für die Probe (maximal 3-stellig) und für den Verdünnungspuffer (maximal 4-stellig) ein.

Die nachfolgenden Probenergebnisse werden vom Gerät mit dem errechneten Verdünnungsfaktor multipliziert.

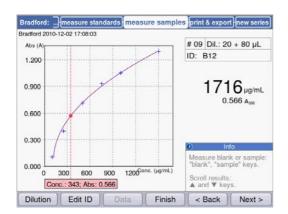

Softkeys

- [Clear dil.]: Werte für die Probenverdünnung löschen.
- [OK]: Probenverdünnung bestätigen und zur Probenmessung zurückkehren.
- [Cancel]: Eingabe abbrechen und zur Probenmessung zurückkehren.

Die Verdünnung wird für alle nachfolgenden Probenergebnisse angewendet, bis sie durch erneute Eingabe geändert wird.

Proben-ID eingeben

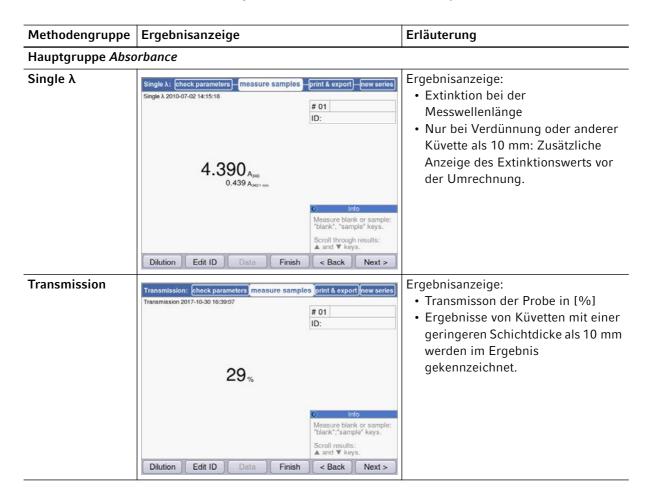
Die ID wird für das nachfolgende Probenergebnis angewendet. Bei Eingabe einer ID wird die zuletzt eingegebene ID vorgegeben, um so schnell fortlaufend strukturierte IDs eingeben zu können. Eine doppelte Vergabe derselben ID innerhalb einer Messreihe ist nicht möglich.

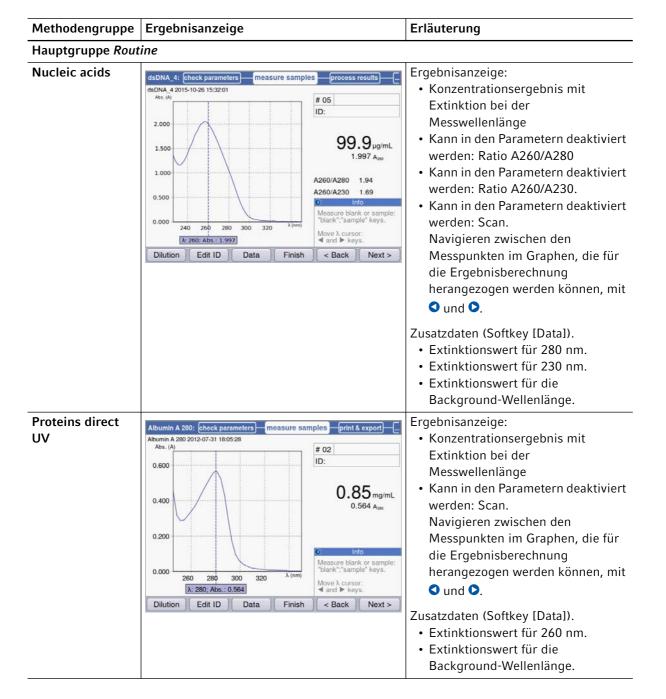


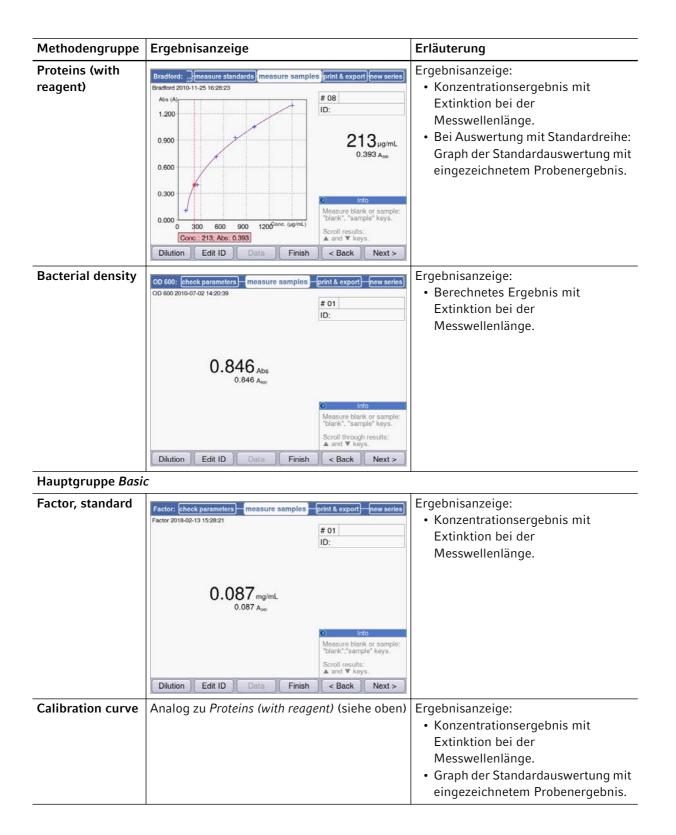
- 1. Drücken Sie den Softkey [Edit ID].
- 2. Geben Sie die Proben-ID (maximal 12-stellig) ein. Alternativen zur Texteingabe:
 - Tastenblock: Bei mehrmaligem Drücken der Taste direkt hintereinander werden die Eingabemöglichkeiten dieser Taste durchlaufen.
 - Tastatur mit Softkey [Keyboard] einblenden: Zeichen mit den Cursor-Tasten auswählen und mit enter bestätigen.

Softkeys

- [Keyboard]: Tastatur einblenden.
- [abc]: Wechsel zwischen Groß- und Kleinbuchstaben bei Eingabe über den Tastenblock.
- [OK]: ID-Eingabe bestätigen und zur Probenmessung zurückkehren.
- [Cancel]: Eingabe abbrechen und zur Probenmessung zurückkehren.

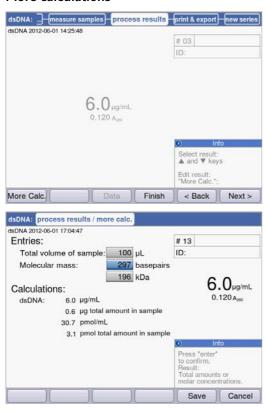

Ergebnisbild mit Verdünnung und ID




Ergebnisbild mit Verdünnung und Proben-ID.

6.4.4 measure samples: Ergebnisanzeigen

In diesem Abschnitt erhalten Sie für alle Methodengruppen eine Darstellung typischer Ergebnisanzeigen sowie einen Überblick über weitere Ergebnisdaten, die Sie über den Softkey [Data] erreichen.


6.4.5 process results

Nach der Probenmessung folgen im Methodenablauf zwei optionale Schritte: **process results** und **print & export**.

Im Schritt **process results** können Sie bei den Methoden der Gruppe **Nucleic acids** die Konzentrationsergebnisse in molare Konzentrationen oder nach Volumeneingabe in Gesamtmengen umrechnen.

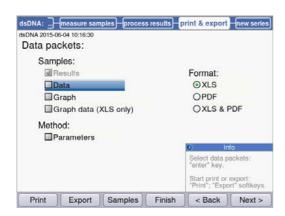
Wie in der Ergebnisanzeige können Sie mit den Cursor-Tasten ○ und ○ zwischen den Probenergebnissen der Messreihe navigieren und gezielt Ergebnisse zur Nachbearbeitung auswählen.

More calculations

Drücken Sie den Softkey [More calc.].

- Nach Eingabe der Molmasse (alternativ in Basen/ Basenpaaren oder in kDa):
 Konzentrationsergebnis in die molare Konzentration umrechnen.
- Nach Eingabe des Probenvolumens:
 Gesamtmenge in der Probe berechnen.
- [Save]: Änderung speichern und zum Methodenschritt **process results** zurückkehren.
- [Cancel]: Abbrechen und zum Methodenschritt process results zurückkehren.

- Für dsDNA wird bei der Berechnung der molaren Konzentration eine doppelsträngige Nukleinsäure angenommen. Für die Methoden ssDNA, RNA und Oligo wird eine einzelsträngige Nukleinsäure angenommen.
- Für Methoden, die in der Hauptgruppe Routine, Methodengruppe Nucleic acids über <New Method> neu programmiert wurden, werden für die Berechnung der molaren Konzentration immer doppelsträngige Nukleinsäuren angenommen.



Nach Speicherung der Änderungen können Sie diese mit [Yes] auf alle Proben der Messreihe übertragen.

6.4.6 print & export

Im letzten optionalen Methodenschritt können Sie Datenpakete für alle oder für ausgewählte Proben einer Messreihe zusammenstellen:

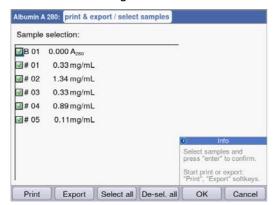
- für den Ausdruck auf dem Drucker
- für den Export auf einen USB-Stick
- für den Export über USB-Kabel direkt zu einem PC
- für den Export per E-Mail

Datenpakete auswählen

 Navigieren Sie mit den Cursor-Tasten und bestätigen Sie mit enter.

Format auswählen

- XLS: Als Excel-Tabelle exportieren.
- PDF: Als PDF exportieren oder ausdrucken.


Softkeys

- [Print]: Ausdruck starten.
- [Export]: Export starten.
- [Sample]: Einzelne Probenergebnisse auswählen.

Datenpakete auswählen	
Results	Primäre Ergebnisdaten; nicht auswählbar, da sie immer übertragen werden.
Data	Zusätzliche Ergebnisdaten, die in den Ergebnisanzeigen während der Messung mit dem Softkey [Data] angezeigt werden.
Graph	Extinktions-Wellenlängen-Spektrum.
Parameters	Methodenparameter
Standards/Results	Ergebnisdaten der Standardauswertung.
Standards/Graph	(Nur bei Standardauswertungen mit mehreren Standards:) Extinktions-Konzentrations-Graph.

In Abhängigkeit von der Methode und von der Parametereinstellung werden nur die jeweils verfügbaren Datenpakete angeboten.

Einzelne Probenergebnisse auswählen

Proben auswählen

- Drücken Sie den Softkey [Samples] um die Probenauswahl aufzurufen.
- Navigieren Sie mit den Cursor-Tasten und bestätigen Sie mit enter.

Softkevs

- [Select all]: Alle Proben auswählen
- [De-Sel. all]: Auswahl zurücksetzen.

Export starten

Die Daten werden als Excel-Datei (.xls) oder als PDF übertragen. Excel-Dateien sind mit Excel-Versionen ab Excel 97 lesbar. Für jedes der ausgewählten Datenpakete wird ein Tabellenblatt in Excel angelegt. Der Dateiname setzt sich aus dem Methodenamen, der Uhrzeit und dem Datum der Messreihe zusammen.

Export-Variante auswählen

- Navigieren Sie mit den Cursor-Tasten und bestätigen Sie mit enter.
- Export to external storage medium: Daten auf einen USB-Stick speichern.
 Wenn kein USB-Stick angeschlossen ist, ist diese Variante nicht anwählbar.
- Export to PC: Daten auf einem PC speichern.
- Export via email: Daten an eine E-Mail-Adresse schicken.

Export auf USB-Stick

- 1. Schließen Sie einen USB-Stick, FAT-32-formatiert, an den USB-Anschluss **4** an (siehe *Produktübersicht auf S. 13*) .
- 2. Starten Sie mit [Export] den "Export auf ein externes Speichermedium".

Export auf PC

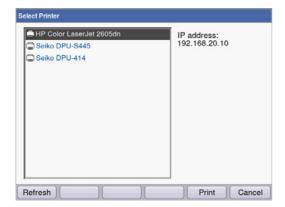
Voraussetzung für das Betriebsystem des PC: Windows XP, SP2 oder höhere Version.

- 1. Verbinden Sie das Gerät mit dem PC über das USB-Kabel am USB-Anschluss **8** (siehe *Produktübersicht auf S. 13*) .
- 2. Stellen Sie bei wiederholtem Export sicher, dass zuvor exportierte Daten auf die Festplatte des PC gespeichert wurden, da diese sonst durch den erneuten Export überschrieben würden.
- 3. Starten Sie mit [Export] den "Export auf den PC".
- 4. Das exportierte Datenpaket wird auf Ihrem PC als Wechseldatenträger mit dem Namen "eppendorf" angezeigt. Öffnen Sie die Datei in diesem Laufwerk und speichern Sie sie auf der Festplatte.

Export an eine E-Mail-Adresse

- 1. Wählen Sie aus der Liste eine E-Mail-Adresse oder wählen Sie "Edit", um eine neue E-Mail-Adresse einzurichten.
- 2. Starten Sie mit [Export] den "Versand an eine EMail-Adresse".

E-Mail-Adressen bearbeiten


- Wählen Sie in der Dropdownliste "Edit" und bestätigen Sie mit enter.
 Es öffnet sich ein Fenster, in dem die E-Mail-Adressen bearbeitet werden können.
- [Edit]: E-Mail-Adresse bearbeiten.
- [New]: Neue E-Mail-Adresse anlegen.
- [Delete]: E-Mail-Adresse löschen.

Ausdruck starten

Die Daten können über Drucker im Netzwerk oder über einen angeschlossenen USB-Drucker ausgedruckt werden.

Wenn das Gerät an ein Netzwerk angeschlossen ist, werden automatisch alle kompatiblen Drucker im Netzwerk erkannt und angezeigt. Besteht keine Verbindung zum Netzwerk, steht nur ein angeschlossener USB-Drucker zur Auswahl.

- 1. Wählen Sie einen Drucker aus.
- 2. Starten Sie mit [Print] den Ausdruck der Daten.

6.4.7 Messreihe abschließen

Im Anschluss an den letzten Methodenschritt **print & export** können Sie eine neue Messreihe mit der gewählten Methode starten oder eine neue Methode wählen.

Messreihe abschließen und neue Messreihe starten

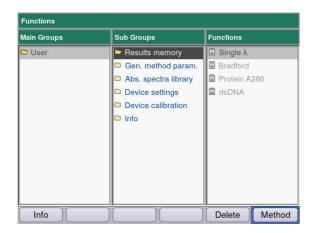
- Softkey [Next >]: Methodenschritt new series aufrufen
- Softkey [New]: Methodenschritt measure samples aufrufen und eine neue Messreihe starten.

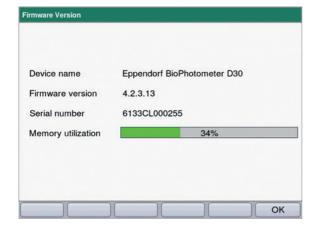
Messreihe abschließen und eine neue Methode wählen

• Softkey [Finish]: Messreihe abschließen und Methodenauswahl aufrufen.

Methoden

48

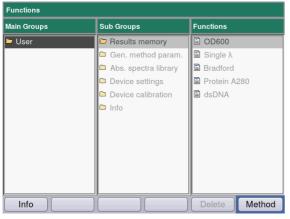

Eppendorf BioPhotometer® D30 Deutsch (DE)


7 Funktionen

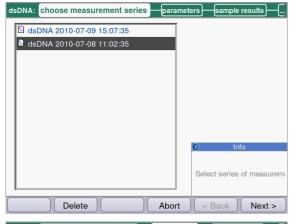
7.1 Funktionen der Hauptgruppe *User*

Mit der Taste **function** oder dem Softkey [Function] gelangen Sie in ein Menü mit Funktionen wie Geräteeinstellungen oder Abrufen gespeicherter Ergebnisse.

Die Funktionen sind analog zur Methodenauswahl in 3 Spalten strukturiert. Für Sie sind die Funktionen in der Hauptgruppe *User* zugänglich. Wie in der Methodenauswahl navigieren Sie mit den Cursor-Tasten, um zunächst die gewünschte Untergruppe und danach in der rechten Spalte die gewünschte Funktion auszuwählen. Mit **enter** rufen Sie die Funktion auf.

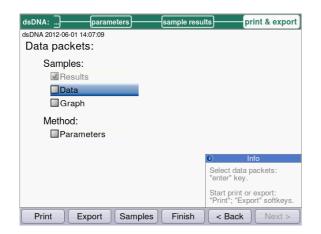

Softkey [Info]:

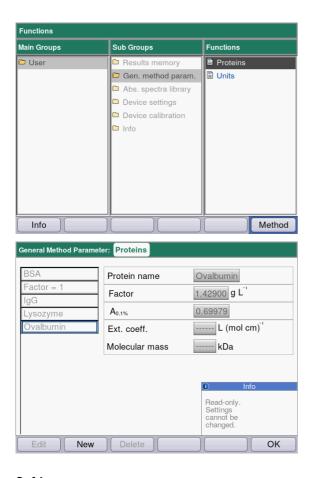
- Firmware-Version
- Seriennummer des BioPhotometer D30
- · Aktuelle Speicherauslastung


Tab. 7-1: Übersicht über die Funktionen

Untergruppe	Erläuterung
Results memory	Gespeicherte Ergebnisse anzeigen. Die Ergebnisse sind nach Methoden und nach Messreihen strukturiert abrufbar und können aus dem Speicher heraus gedruckt, exportiert und gelöscht werden. Es ist möglich einzelne Messreihen, alle Messreihen einer Methode oder den gesamten Ergebnisspeicher zu löschen. • Um die Methode und alle dazugehörigen Messreihen zu löschen, drücken Sie den Softkey Delete. • Bestätigen Sie mit enter.
General method parameters	Parameter, die übergreifend für verschiedene Methoden genutzt werden, sind im Bereich Functions zentral gespeichert. Werkseitig eingestellte Parameter können nicht gelöscht werden. Neu erstellte Parameter können frei verändert werden. Im Methodenschritt Check parameters sind die übergreifenden Parameter über Auswahlboxen dann einfach auswählbar. • Proteins : Parameter für Methoden der Gruppe Proteins direct UV • Units : Einheiten für Konzentrationsergebnisse, die für viele Methoden genutzt werden können.
Absorbance spectra library	Extinktions-Wellenlängen-Spektren wichtiger Substanzen, z. B. DNA. Die Spektren dienen der Information und können als Vergleich zum Spektrum eines Probenergebnisses herangezogen werden.
Device settings	Editierbare Geräteeinstellungen, z. B. Sprache.
Device calibration	Möglichkeit zur Überprüfung des Photometers. Hierzu benötigen Sie einen Filtersatz von Eppendorf.
Info	Open-Source-Lizenzen.

7.1.1 **Results Memory**



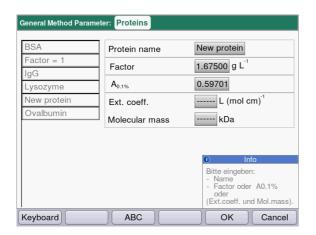

- ▶ Wählen Sie in der rechten Spalte die Methode aus, für die Sie gespeicherte Ergebnisse aufrufen möchten.
- ▶ Um die Methode und alle dazugehörigen Messreihen zu löschen, drücken Sie den Softkey **Delete**.
- ▶ Bestätigen Sie mit enter.
- ▶ Wählen Sie die gewünschte Messreihe mit den Cursor-Tasten.
- ▶ Um die Methode und alle dazugehörigen Messreihen zu löschen, drücken Sie den Softkey **Delete**.
- ▶ Bestätigen Sie mit enter.

Wie im Methodenablauf können Sie auch hier der Reihe nach durch die Anzeigen der Parameter, der Standards, der Probenergebnisse und zuletzt der Datenpakete für Druck und Export wechseln. Die Belegung der Softkeys entspricht der Belegung im Methodenablauf.

 Wenn Sie Ergebnisse drucken oder exportieren möchten, wählen Sie die Datenpakete aus.
 Der Ablauf für Druck und Export sowie die Bedeutung der Funktionstasten entspricht dem Methoden-Schritt print & export.

7.1.2 General Method Parameters

- ▶ Wählen Sie in der rechten Spalte die Parametergruppe aus, für die Sie Parameter editieren möchten.
- ▶ Bestätigen Sie mit enter.


In diesem Beispiel sind Parametergruppen für verschiedene Proteine zusammengefasst und jeweils unter einem Namen abgelegt. Unter diesem Namen kann die gewünschte Parametergruppe bei der Editierung einer Protein-Methode (Methodengruppe Proteins direct UV) in das Methodenprogramm importiert werden. Die werkseitig vorliegenden Proteine sind schreibgeschützt und können nicht bearbeitet oder gelöscht werden.

Display:

- links: Name des Proteins. Wählen Sie mit und
- rechts: zugehörige Parameter

Softkeys

- [Edit]: Ausgewählte Parametergruppe editieren.
- [New]: Neue Parametergruppe erstellen.
- [Delete]: Ausgewählte Parametergruppe löschen.
- [OK]: In die Funktionsauswahl zurückkehren.



- ► Um eine Parametergruppe zu editieren, wählen Sie mit und editierenden Oden zu editierenden Parameter.
- ▶ Bestätigen Sie mit enter.

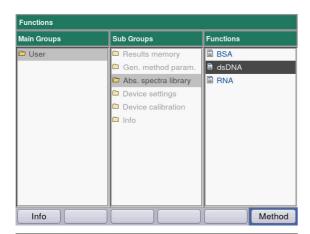
Softkeys

- [OK]: Eingabe speichern und in die Auswahl der Parametergruppe zurückkehren.
- [Cancel]: In die Auswahl der Parametergruppe ohne Änderung zurückkehren.

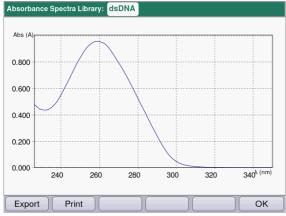
Bei der Programmierung einer Methode der Methodengruppe **Proteins direct UV** können Sie auf die Einträge in **General Method Parameter** zugreifen:

Wählen Sie den Namen des Proteins aus, um die zugehörige Parametergruppe in das Methodenprogramm zu importieren. Über die Auswahl "edit" beim Parameter "Protein" können Sie auch direkt in die Funktion **General Method Parameter** gelangen und dort die Parameter ansehen sowie editieren.

Tab. 7-2: Parameter in General Method Parameter

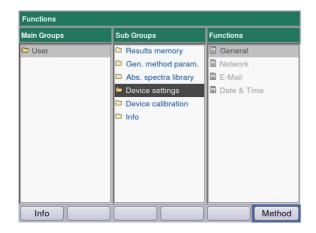

Parameter	Erläuterung
Proteins	Diese Parameter werden bei der Auswahl eines Proteins bei der Programmierung einer Methode der Gruppe Proteins direct UV in die Methodenparameter geladen. Die werkseitig programmierten Parameter sind schreibgeschützt und können nicht bearbeitet oder gelöscht werden.
 Protein name Factor A_{0.1%} Ext.coeff. Molecular mass 	Neben dem Namen und der Wellenlänge können Sie zur Definition des Faktors für die Berechnung der Konzentration aus der Extinktion die folgenden Daten eingeben: Faktor oder A _{0.1%} oder Extinktionskoeffizient und Molmasse.

Parameter	Erläuterung
Units	Aus allen verfügbaren Einheiten können Sie bei der Programmierung von Methodenparametern eine Einheit auswählen. Einheiten, welche in vorprogrammierten Methoden verwendet werden, sind grau hinterlegt und können nicht gelöscht werden.
• Unit	Eine noch nicht programmierte Einheit für das Konzentrationsergebnis eingeben.



- Kenndaten für Proteine, die nicht ab Werk vorprogrammiert sind, können in der Datenbank expasy ermittelt werden: http://www.expasy.org/tools/protparam.html.
- Eine Tabelle mit A_{1%}-Werten für viele Proteine finden Sie auch in: C.N.Pace et al., Protein Science (1995), 4: 2411–2423 (Tabelle 5). Die A_{1%}-Werte müssen mit 0,1 multipliziert werden, um die benötigten A_{0,1%}-Werte zu erhalten.

7.1.3 Absorbance Spectra Library


In der rechten Spalte wählen Sie das Spektrum aus, das Sie aufrufen möchten, und bestätigen Sie mit enter.

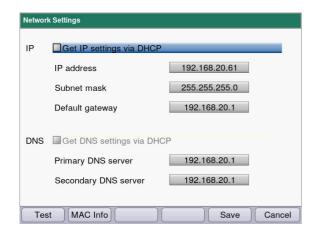
Softkeys

- [Export] und [Print]: Auf einen USB-Stick oder per USB-Kabel zu einem PC exportieren bzw. drucken (siehe *print & export auf S. 44*).
- [OK]: In die Funktionsauswahl zurückkehren.

7.1.4 Device Settings

Folgende Einstellungen können angepasst werden:

Device Settings


- General
- Network
- E-Mail
- Date and Time

General Device Settings

- Sprache auswählen: Deutsch, Englisch, Französisch, Spanisch, Italienisch, Japanisch*).
- Gerätename
- Zeitintervall für die Aktivierung des Energiesparmodus einstellen.
- Häufigkeit der automatischen Selbstüberprüfung nach dem Einschalten des Geräts einstellen.
- Informationen zum letzen Selbsttest werden angezeigt.
- *) Bei einer Sprachumstellung z. B. auf Japanisch wird der Schrifttyp gewechselt. Das kann dazu führen, dass Teile des Textes nicht richtig angezeigt werden.
- Gerät ausschalten und wieder einschalten. Die Sprachen werden nach dem Neustart korrekt dargestellt.

Softkeys

- [Save]: Änderungen speichern und in die Funktionsauswahl zurückkehren.
- [Cancel]: In die Auswahl der Parametergruppe ohne Änderung zurückkehren.

Network Settings

Fragen Sie ihren Netzwerk-Administrator, welche Einstellungen erforderlich sind.

- Auswahl, ob IP-Einstellungen automatisch per DHCP erfolgen sollen. Die IP-Einstellungen können auch manuell eingegeben werden.
 - IP-Adresse
 - Subnetzmaske
 - Standardgateway
- Auswahl, ob DNS-Einstellungen automatisch per DHCP erfolgen sollen (Nur verfügbar, wenn IP-Einstellungen automatisch per DHCP bezogen werden).

Folgende DNS-Einstellungen können manuell eingegben werden:

- Primärer DNS-Server
- Sekundärer DNS-Server

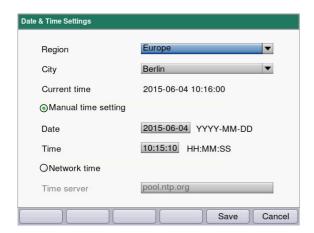
Softkeys

- [MAC Info]: Informationen zu Netzwerkeinstellungen.
- [Save]: Änderungen speichern und in die Funktionsauswahl zurückkehren.
- [Cancel]: In die Auswahl der Parametergruppe ohne Änderung zurückkehren.

E-Mail Settings

Fragen Sie ihren Netzwerk-Administrator, welche Einstellungen erforderlich sind.

- SMTP Server: E-Mail-Server eingeben.
- · Port eintragen.
- Absender: Gerätenamen eingeben.
- SMTP Authentifizierung verwenden: Falls eine Authentifizierung erforderlich ist, muss ein Benutzername und ein Passwort vergeben werden.
- Empfänger E-Mail-Adresse: Liste mit E-Mail Adressen.



E-Mail-Adressen bearbeiten

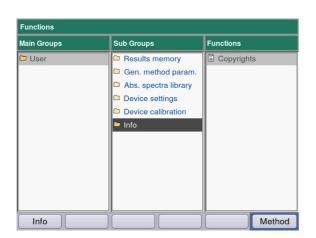
 Wählen Sie in der Dropdownliste "Edit" und bestätigen Sie mit enter.
 Es öffnet sich ein Fenster, in dem die E-Mail-Adressen bearbeitet werden können.

Softkeys

- [Edit]: E-Mail-Adresse bearbeiten.
- [New]: Neue E-Mail-Adresse anlegen.
- [Delete]: E-Mail-Adresse löschen.

Date and Time Settings

- · Region auswählen.
- · Stadt auswählen.
- · Anzeige der aktuellen Zeit
- ManuelleZeiteinstellung: Datum und Zeit eingeben.
- Netzwerkzeit
 Zeitserver: Gewünschten Zeitserver eintragen.


Softkeys

- [Save]: Änderungen speichern und in die Funktionsauswahl zurückkehren.
- [Cancel]: In die Auswahl der Parametergruppe ohne Änderung zurückkehren.

7.1.5 Device Calibration

Die Geräteüberprüfung ist separat beschrieben (siehe Gerät überprüfen auf S. 61).

7.1.6 Info

Unter dem Menüpunkt **Copyright** finden Sie Lizenzinformationen zur Open-Source-Software.

Funktionen

58

Eppendorf BioPhotometer® D30 Deutsch (DE)

8 Instandhaltung

8.1 Reinigung

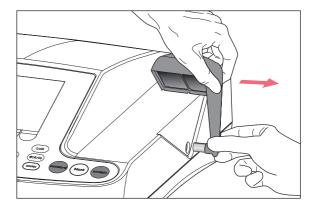
GEFAHR! Stromschlag durch eintretende Flüssigkeit.

- ▶ Schalten Sie das Gerät aus und trennen Sie es vom Stromnetz, bevor Sie mit der Reinigung oder Desinfektion beginnen.
- ▶ Lassen Sie keine Flüssigkeiten in das Gehäuseinnere gelangen.
- ▶ Führen Sie keine Sprühreinigung/Sprühdesinfektion am Gehäuse durch.
- ▶ Schließen Sie das Gerät nur innen und außen vollständig getrocknet wieder an das Stromnetz an.

ACHTUNG! Korrosion durch aggressive Reinigungs- und Desinfektionsmittel.

- ▶ Verwenden Sie weder ätzende Reinigungsmittel noch aggressive Lösungs- oder schleifende Poliermittel.
- ▶ Inkubieren Sie das Zubehör nicht längere Zeit in aggressiven Reinigungs- oder Desinfektionsmitteln.
- 1. Wischen Sie die Oberflächen mit einem Tuch ab, das Sie mit einem milden Reinigungsmittel befeuchtet haben.

Küvettenschacht reinigen


2. Reinigen Sie den Küvettenschacht nur mit einem mit Ethanol oder Isopropanol befeuchteten fusselfreien Wattestäbchen. Vermeiden Sie, dass Flüssigkeit in den Küvettenschacht gelangt. Sofern zur Beseitigung der Verunreinigung mit Wasser befeuchtet werden musste, reinigen Sie abschließend mit einem mit Ethanol oder Isopropanol befeuchteten Wattestäbchen, um das Trocknen des Küvettenschachts zu beschleunigen.

8.1.1 Küvettenschachtabdeckung reinigen

Wenn Sie nicht nur die direkt zugängliche Oberfläche der Küvettenschachtabdeckung reinigen möchten, können Sie die Abdeckung ausbauen.

- ▶ Weichen Sie die Küvettenschachtabdeckung nicht in Reinigungsmittel ein.
- ▶ Reinigen Sie die Küvettenschaftabdeckung wie beschrieben.
- 1. Heben Sie die Küvettenschachtabdeckung mit einer Hand an.
- Fassen Sie mit der anderen Hand die Abdeckung auf Höhe des Haltestifts und ziehen Sie die Abdeckung nach rechts, bis der Haltestift ganz herausgezogen ist.

- Ziehen Sie die Abdeckung im 90-Grad-Winkel nach rechts.
- 3. Reinigen Sie die Abdeckung mit einem Tuch oder einem fusselfreien Wattestäbchen, das Sie mit einem milden Reinigungsmittel befeuchtet haben.
- 4. Schieben Sie den Haltestift bis zum Anschlag wieder in das Gehäuse hinein Der Haltestift ist im Gehäuse ganz verschwunden.
 - A

Verschließen Sie bei Nichtgebrauch des Photometers den Küvettenschacht mit der blauen Küvettenschachtabdeckung, um ihn vor Staub und anderen Verschmutzungen zu schützen.

8.2 Desinfektion/Dekontamination

GEFAHR! Stromschlag durch eintretende Flüssigkeit.

- ▶ Schalten Sie das Gerät aus und trennen Sie es vom Stromnetz, bevor Sie mit der Reinigung oder Desinfektion beginnen.
- ▶ Lassen Sie keine Flüssigkeiten in das Gehäuseinnere gelangen.
- ▶ Führen Sie keine Sprühreinigung/Sprühdesinfektion am Gehäuse durch.
- ▶ Schließen Sie das Gerät nur innen und außen vollständig getrocknet wieder an das Stromnetz an.
- 1. Reinigen Sie das Gerät vor der Desinfektion mit einem milden Reinigungsmittel (siehe *Reinigung auf S. 59*).
- 2. Wählen Sie eine Desinfektionsmethode, die den für Ihren Anwendungsbereich geltenden gesetzlichen Bestimmungen und Richtlinien entspricht.
- 3. Verwenden Sie z.B. Alkohol (Ethanol, Isopropanol) oder alkoholhaltige Desinfektionsmittel.
- 4. Wischen Sie die Oberflächen mit einem Tuch ab, welches Sie mit Desinfektionsmittel befeuchtet haben.
- 5. Wenn zur Desinfektion die Küvettenschachtabdeckung ausgebaut werden muss, verfahren Sie zum Ausbau und Zusammenbau wie beschrieben (siehe Küvettenschachtabdeckung reinigen auf S. 60).
- 6. Die demontierte Küvettenschachtabdeckung können Sie mittels Sprühdesinfektion desinfizieren.

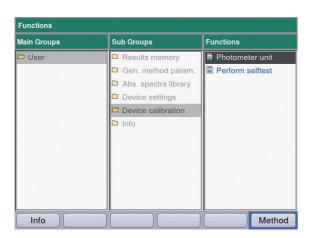
8.3 Gerät überprüfen

Voraussetzungen:

- Umgebungsbedingungen einhalten (siehe *Umgebungsbedingungen auf S. 77*).
- Prüfung bei ca. 20 °C durchführen. Temperaturschwankungen vermeiden (z. B. durch geöffnete Fenster).
- Filter nur kurzfristig dem Filterkasten entnehmen und vor Verschmutzung oder Beschädigung der Filteroberflächen schützen.
- Filter vor Staub, Hitze, Flüssigkeit und aggressiven Dämpfen schützen.
- Bei Überprüfung der Photometereinheit: Aufkleber des verwendeten Filters zeigt nach vorn.
- Küvettenschacht ist frei von Verschmutzungen.

8.3.1 Photometereinheit überprüfen

Zur Überprüfung der photometrischen Richtigkeit und der Wellenlängenrichtigkeit wird von Eppendorf ein Filtersatz angeboten. Der Satz enthält ein Leerwertfilter A0 und 3 Filter A1, A2 und A3 zur Überprüfung der photometrischen Richtigkeit sowie 2 Filter zur Überprüfung der Wellenlängenrichtigkeit (260 nm, 280 nm). Die Extinktionen der Filter werden gegen das Leerwertfilter A0 gemessen. Zusätzlich zu den Informationen über die Richtigkeit erhalten Sie auch Informationen über die Präzision: Aus den jeweils 15 Messungen pro Wellenlänge wird neben dem Mittelwert auch der Variationskoeffizient (VK-Wert) berechnet.


Zur Messung setzen Sie zunächst das Leerwertfilter (für die Leerwertmessung) und anschließend die Prüffilter wie Küvetten in den Küvettenschacht ein. Die für die Prüffilter gemessenen Extinktionswerte werden gegen den zulässigen Wertebereich verglichen. Die Grenzwerte für den zulässigen Bereich sind für die einzelnen Filter in einer Tabelle im Deckel des Filterkastens abgedruckt.

Wenn Sie die Werte dokumentieren wollen, können Sie die Werte nach der Messung ausdrucken oder exportieren. Es werden maximal 12 Überprüfungen gespeichert. Ist der Speicher voll, werden die Werte der ältesten Überprüfung überschrieben.

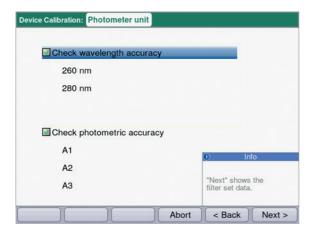
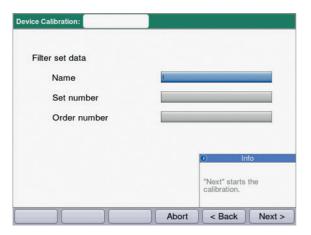
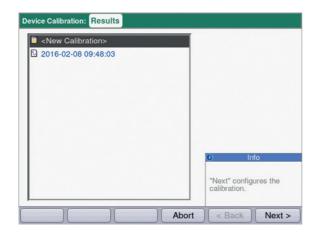
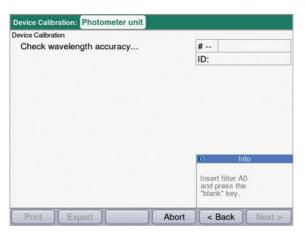

eppendorf BioPhotometer D30 reference filter set Order No./Best. Nr.: 6133 928.004 Set No./Satz Nr.:840 Function: Device calibration/Photometer unit Limits measured against Blank A 0 at approx. 20°C Grenzwerte gemessen gegen Blank A 0 bei ca. 20°C 440 917.840 921.840 916.840 922.840 SN: 6131 914.840 923.840 Sample Sample Туре 0.157-0.181 0.904-0.960 1.760-1.869 0.152-0.176 0.901-0.956 1.719-1.826 260 nm 0.000 280 nm 0.000 1.165-1.352 0.990.1.224 320 nm 0.000 562 nm 0.000 Zufällige Messabweichung der Wellenlänge Zufällige Messabweichung des Photometers 260 - 405 nm ≤ 3.0 % ≤ 2.0 % ≤ 1.5 % Filter auf NIST® rückführbar / Filter traceable to NIST® Wavelength and photometric characterization of filters: All characterizations are performed on a Cary 100 Bio reference UV/Vis spectrophotometer, serial number EL 99023107. The instrument is requalified regularly by the manufacturer, and is confirmed and documented to perform within manufacturer's specifications. Wellenlängen- und photometrische Bestimmung der Filter: Alle Messungen werden auf einem Cary 100 Bio Referenz UV/Vis Spektropho Seriennummer EL 99023107 durchgeführt. Dieses Instrument wird regelmäßig vom Hersteller requalifiziert und die spezifikationsgemäße Funktion dokumentiert. 21.12.2017

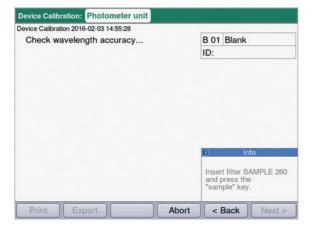
Abb. 8-1: Deckel-Innenseite des Filterkastens (Muster)


8.3.1.1 Prüfung auf photometrische Richtigkeit durchführen

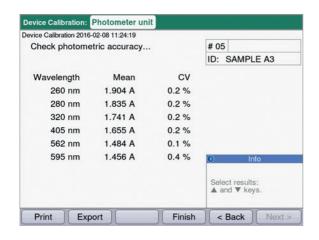
1. Wählen Sie in der Gruppe **Device calibration** die Funktion **Photometer unit** und bestätigen Sie mit **enter.**


- Wählen Sie aus, ob Sie die Wellenlängenrichtigkeit, die Photometrische Richtigkeit oder beides überprüfen wollen. Bestätigen Sie mit enter.
- 3. Wechseln Sie mit [Next >] zum nächsten Schritt.


- 4. Füllen Sie die Eingabefelder aus. Die Angaben sind optional.
- 5. Wechseln Sie mit [Next >] zum nächsten Schritt.


- Falls eine Kalibrierung zum ersten Mal durchgeführt wird, entfällt Schritt 6.
- Wurde bereits eine Kalibrierung durchgeführt, werden die Ergebnisse der letzten Kalibrierungen angezeigt.

6. Wählen Sie <New Calibration> und starten Sie mit [Next >] die Kalibrierung.



7. Folgen Sie den Anweisungen im Fenster *Info* und messen Sie zunächst das Leerwertfilter A0.

8. Nach dem Leerwert A0 starten Sie mit dem ersten Prüffilter.

In der Info-Box wird der erwartete Prüffilter angezeigt (hier: SAMPLE 260).

 Ergebnisanzeige nach Messung aller 3 Prüffilter zum Test auf Photometrische Richtigkeit. Mit den Tasten und können Sie sich nochmals die Ergebnisse für die verschiedenen Prüffilter ansehen.

Softkeys

- [Finish]: Prüfung beenden.
- [Export]: Ergebnisse als PDF exportieren.
- [Print]: Ergebnisse ausdrucken.
- 10. Vergleichen Sie die Mittelwerte und Variationskoeffizienten mit der mitgelieferten Tabelle.

Sollten die gemessenen Werte nicht mit dem zulässigen Wertebereich übereinstimmen, wenden Sie sich an den Eppendorf Service.

8.3.2 Selbsttest des Geräts

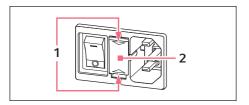
Die Häufigkeit des automatischen Selbsttests (Dauer ca. 1 Minute) können Sie mit der Funktion **Device settings** einstellen (siehe *Device Settings auf S. 55*). Ab Werk ist als **Selbsttest-Intervall** "wöchentlich" eingestellt.

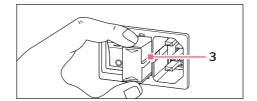
Beim Selbsttest werden die folgenden Punkte überprüft:

- Überprüfung des Detektors
 - Bestimmung der zufälligen Messabweichung der verfügbaren Wellenlängen
- Überprüfung der Lichtquelle
 - Überprüfung der maximal verfügbaren Energie der Lichtquelle und der Qualität der Lichtleitung durch das Gerät
 - Bestimmung der zufälligen Messabweichung eines Signals am Referenzsensor
 - Bestimmung der Signalhöhe am Referenzsensor
 - Separate Bestimmung der Lichtintensität im UV-Bereich
- Bestimmung der systematischen und zufälligen Messabweichung der Wellenlänge
- ▶ Wählen Sie in der Gruppe **Device calibration** die Funktion **Perform selftest** und bestätigen Sie mit **enter.**

Nach Ablauf des Selbsttests zeigt das Display die Meldung PASSED.

Wenn das Display die Meldung **FAILED** zeigt, ist der Selbsttest fehlgeschlagen. Wenn sich dieser Fehler nicht beheben lässt (siehe *Fehlermeldungen auf S. 69*), wenden Sie sich an den autorisierten Service.


8.4 Sicherungen ersetzen



GEFAHR! Stromschlag.

▶ Schalten Sie das Gerät aus und ziehen Sie den Netzstecker, bevor Sie mit der Wartung bzw. Reinigung beginnen.

Der Sicherungshalter befindet sich zwischen der Netzanschlussbuchse und dem Netzschalter.

- 1. Ziehen Sie den Netzstecker.
- 2. Drücken Sie die Kunststofffedern **1** oben und unten zusammen und ziehen Sie den Sicherungshalter **2** vollständig heraus.
- 3. Ersetzen Sie defekte Sicherungen und setzen Sie den Sicherungshalter wieder ein. Achten Sie auf die korrekte Position der Führungsschiene 3.

8.5 Dekontamination vor Versand

Wenn Sie das Gerät im Reparaturfall zum autorisierten Technischen Service oder im Entsorgungsfall zu Ihrem Vertragshändler schicken, beachten Sie Folgendes:

WARNUNG! Gesundheitsgefahr durch kontaminiertes Gerät.

- 1. Beachten Sie die Hinweise der Dekontaminationsbescheinigung. Sie finden diese als PDF-Datei auf unserer Internetseite (www.eppendorf.com/decontamination).
- 2. Dekontaminieren Sie alle Teile, die Sie versenden.
- 3. Legen Sie der Sendung die vollständig ausgefüllte Dekontaminationsbescheinigung bei.

9 9.1 Problembehebung

Allgemeine Fehler

Fehler	Mögliche Ursache	Abhilfe
Messergebnisse sind unpräzise.	Haltbarkeit des Reagenzes überschritten.	► Stellen Sie sicher, dass das Reagenz noch haltbar ist und richtig vorbereitet wird.
	Reagenz nicht richtig vorbereitet.	► Benutzen Sie für die Vorbereitung – sofern benötigt – sauberes, demineralisiertes Wasser von ausreichender Qualität.
	Pipettierung nicht richtig.	► Stellen Sie sicher, dass die Pipette kalibriert ist und richtig pipettiert.
	Ablauf der Inkubation vor der Messung nicht richtig.	▶ Sofern der Methodenablauf vor der Messung eine Inkubation erfordert, stellen Sie sicher, dass die Temperatur und Zeit für die Inkubation korrekt eingehalten werden.
	Küvette verschmutzt.	 Reinigen und spülen Sie die Küvette. Achten Sie bei einem Küvettenwechsel darauf, dass das optische Fenster der Küvette sauber bleibt und nicht mit den Fingern berührt wird. Wenn das Küvettenfenster durch Fingerabdrücke verschmutzt ist, reinigen Sie es durch Abwischen mit einem fusselfreien Labortuch, das mit Ethanol oder Isopropanol getränkt ist.
	Küvette nicht vollständig und blasenfrei mit Messlösung befüllt.	Stellen Sie sicher, dass das erforderliche Mindestvolumen der Küvette für eine Messung erreicht wird und dass keine Blasen in der Messlösung sind.
	Trübungen in der Messlösung.	➤ Zentrifugieren Sie trübe, partikelhaltige Messlösungen und benutzen Sie den klaren Überstand.
	Photometer driftet.	 Wenden Sie sich an den Eppendorf-Service. Halten Sie die Umgebungsbedingungen ein. Vermeiden Sie Temperaturschwankungen.
	Küvettenschacht verschmutzt.	▶ Reinigen Sie den Küvettenschacht.

Fehler	Mögliche Ursache	Abhilfe
Messergebnisse sind unrichtig.	Methode falsch programmiert.	► Stellen Sie sicher, dass die Methodenparameter richtig eingegeben sind.
	Standardlösung nicht richtig vorbereitet.	 Stellen Sie sicher, dass der richtige Standard benutzt wird und die Messlösung für den Standard richtig vorbereitet wird.
	Extinktion des Reagenz driftet.	▶ Bei instabiler Reagenzextinktion und Endpunkt-Methoden: Messen Sie bei der Messung einer langen Probenserie den Reagenzleerwert nicht nur zu Beginn, sondern auch während der Probenserie. Bei stärkerer Drift des Reagenzleerwerts ist das Reagenz nicht geeignet für fehlerfreie Messungen und muss durch neues Reagenz ersetzt werden.
	Die Küvette ist nicht richtig positioniert.	 Positionieren Sie die Küvette so im Küvettenschacht, dass die optischen Fenster in Lichtwegrichtung zeigen. Lichtweg Photometrie: von hinten nach vorn

9.2 Fehlermeldungen

Geräteanzeigen mit Fehlermeldungen können Sie mit dem Softkey [OK] verlassen.

Systemfehler erfordern eine Beurteilung durch den Technischen Service. Diese Fehler werden in Englisch dargestellt (System error ...). Bitte wenden Sie sich in diesen Fällen an den Technischen Service. Andere Fehlermeldungen, bei denen Sie selbst Maßnahmen ergreifen können, sind in der folgenden Tabelle erläutert.

Symptom/Meldung	Mögliche Ursache	Abhilfe
Selbsttest fehlgeschlagen.	 Küvettenschachtabdeckung war beim Selbsttest offen. Der Küvettenschacht war beim Selbsttest nicht leer. 	▶ Wiederholen Sie den Selbsttest mit leerem Küvettenschacht und geschlossener Küvettenschachtabdeckung.
	Gerät ist defekt.	► Wenden Sie sich an den Eppendorf-Service.
Die Datei konnte nicht exportiert werden.	Beim Export von Daten: USB-Stick falsch formatiert oder defekt. USB-Stick zu früh (während des Exports) aus dem Gerät entfernt.	 USB-Stick neu formatieren oder ersetzen. USB-Stick erneut anschließen und Export wiederholen.
Der Drucker konnte nicht initialisiert werden.	 Drucker nicht angeschlossen oder ausgeschaltet. Drucker falsch konfiguriert. 	▶ Drucker anschließen und anschalten. ▶ Drucker neu konfigurieren. Die Druckereinstellungen zur richtigen Konfiguration finden Sie in der Installationsbeschreibung (siehe Drucker am USB-Anschluss anschließen auf S. 16).
Blank-Messung: Eine Intensität an einem eine Haupt- oder Neben- oder Scanwellenlänge beeinflussenden Pixel ist zu niedrig.	 Die für die Blank-Messung benutzte Leerwertlösung hat eine zu hohe Extinktion. Falsche oder trübe Leerwertlösung. 	▶ Leerwertlösung überprüfen und Blank ggf. neu messen.
Der eingegebene Name ist nicht gültig.	 Fehler bei der Eingabe von Namen. Verschiedene Ursachen sind möglich. Zur konkreten Ursache bitte die Information in der Hilfebox beachten. 	▶ Siehe Information in der Hilfebox.

Symptom/Meldung	Mögliche Ursache	Abhilfe
Es existiert bereits eine Methode (oder ein Ordner, Protein, Unit) mit diesem Namen.	 Der Name, unter dem die Methode abgespeichert werden soll, wurde bereits für eine andere Methode in demselben Ordner verwendet. Die Meldung erscheint auch, wenn bereits vergebene Namen für einen Ordner oder (unter General Method Parameter) für ein Protein oder eine Konzentrationseinheit editiert wurden. 	▶ Anderen Namen vergeben.
Folgende Parameterwerte sind in General Method Parameter nicht definiert:	Beim Öffnen einer Methode, deren Parameter auf General Method Parameter zurückgreift, wurde festgestellt, dass mindestens ein Parameter (Protein, Einheit) dort nicht mehr existiert, also vermutlich gelöscht wurde.	▶ Wählen Sie einen anderen Parameter aus der vorhandenen Liste. Falls erforderlich, programmieren Sie in General Method Parameter einen neuen Listeneintrag, um bei der Programmierung einer Methode darauf zurückgreifen zu können.
Der Wert des mit * markierten Parameters ist nicht in den Gen. Meth. Param. definiert. Bitte korrigieren Sie den Parameter.	Diese Fehlermeldung erscheint beim Editieren von Methodenparametern. • Parameter in General Method Parameter ist nicht definiert.	▶ Wählen Sie einen anderen Parameter aus der vorhandenen Liste. Falls erforderlich, programmieren Sie in General Method Parameter einen neuen Listeneintrag, um bei der Programmierung einer Methode darauf zurückgreifen zu können.
Die eingegebenen Standardkonzentrat ionen sind nicht monoton steigend bzw. monoton fallend. Bitte Standardkonzentrat ionen korrigieren.	Siehe Fehlertext.	▶ Die Standardkonzentrationen so eingeben, dass der erste Standard die niedrigste Konzentration erhält und die weiteren Standardkonzentrationen eine aufsteigende Folge bilden.
Mindestens zwei eingegebene Standardkonzentrat ionen sind gleich. Bitte Standardkonzentrat ionen korrigieren.	Siehe Fehlertext.	▶ Die Standardkonzentrationen so eingeben, dass der erste Standard die niedrigste Konzentration erhält und die weiteren Standardkonzentrationen eine aufsteigende Folge bilden.
Die Messwerte sind nicht streng monoton!	Fehler bei der Messung einer Standardreihe: Die gemessenen Extinktionswerte der Standardreihe sind nicht kontinuierlich steigend oder fallend.	 Standardmessungen wiederholen oder einzelnes, fehlerhaft gemessenes Standardergebnis löschen.

Symptom/Meldung	Mögliche Ursache	Abhilfe
Die ID kann nicht gesetzt werden.	 Fehler bei der Eingabe der Proben-ID. Verschiedene Ursachen sind möglich. Zur konkreten Ursache bitte die Information in der Hilfebox beachten. 	► Siehe Information in der Hilfebox.
Die Verdünnung kann nicht gesetzt werden.	Fehler bei der Eingabe der Verdünnung. Verschiedene Ursachen sind möglich. Zur konkreten Ursache bitte die Information in der Hilfebox beachten.	➤ Siehe Information in der Hilfebox.
Es kann nur noch eine Messung in dieser Messreihe durchgeführt werden. Die maximale Anzahl an Messungen in einer Messreihe ist erreicht.	Die Zahl an Messungen in einer Messreihe ist auf 99 begrenzt.	▶ Nach maximal 99 Messungen eine neue Messreihe starten.

9.3 Ergebniskennzeichnungen

Warnungen und Fehlermeldungen zu Ergebnissen erscheinen in der Hilfebox unten rechts im Display. Bei Warnungen ist die Kopfzeile der Hilfebox gelb unterlegt, bei Fehlermeldungen rot.

Warnungen: Entscheiden Sie unter Berücksichtigung der angezeigten Warnung, ob das Ergebnis für Sie nutzbar ist.

Fehlermeldungen: Es wird kein Ergebnis dargestellt; die Begründung wird in der Fehlermeldung angezeigt.

Symptom/Meldung	Mögliche Ursache	Abhilfe
Standardkurve ist nicht monoton. Bitte anderen Curve Fit wählen.	Bei Auswertung einer Standardkurve mit den Curve Fit-Verfahren "spline interpolation", "quadratical regression" oder "cubical regression" wurde kein verwertbares Ergebnis erhalten.	▶ Anderes Curve Fit-Verfahren wählen.
Einige Extinktionswerte bei Nebenwellenlängen sind zu hoch und werden nicht angezeigt.	 Bei mindestens einer Nebenwellenlänge war die Extinktion oberhalb des Messbereichs. Nebenwellenlängen werden nicht für die Berechnung des Konzentrationsergebnisses herangezogen, sondern für andere Zwecke benutzt. Z. B. Methode dsDNA: Extinktion bei 280 nm für die Berechnung von Ratio 260/280. Trübungen in der Messlösung Messungen an den Grenzen des photometrischen Messbereichs. 	➤ Wenn die Extinktionswerte der Nebenwellenlängen relevant sind: Probe verdünnen bzw. durch Zentrifugation Trübung beseitigen und Messung wiederholen.
Das Ergebnis liegt außerhalb des Bereichs der Standardkonzentrat ionen.	Bei Methoden mit Auswertung über Standardkurven (nichtlineare Auswerteverfahren): Das Probenergebnis liegt um bis zu 5 % außerhalb des Bereichs der Standardkonzentrationen.	▶ Messergebnis akzeptieren oder Probe unter Bedingungen neu messen, bei denen das Ergebnis im Bereich der Standardkonzentrationen liegt (Probe verdünnen oder Standardkonzentrationen verändern und neu messen).

Symptom/Meldung	Mögliche Ursache	Abhilfe
Das Bestimmtheitsmaß ist < 0,8.	 Bei Methoden mit Auswertung von Standardreihen über Regressionsverfahren: Das Bestimmtheitsmaß für die Regressionsauswertung deutet auf eine erhebliche Abweichung der Messpunkte von der Regressionsgeraden hin. Trübungen in der Messlösung. Messungen an den Grenzen des photometrischen Messbereichs. 	 Ergebnis der Standardauswertung akzeptieren oder Standards neu messen. Auf klare Messlösungen achten.
Das Bestimmtheitsmaß für die Regressionsauswer tung der Standardreihe ist < 0,8.	Bei Methoden mit Auswertung von Standardreihen über Regressionsverfahren: Warnung erscheint nach Messungen von Proben, wenn die Regressionsauswertung für die Standardreihe nichtlinear war, die Standardauswertung aber vom Anwender akzeptiert wurde.	▶ Probenergebnisse unter dem genannten Vorbehalt verwenden oder Standardreihe und Proben neu messen.
Scan: Einige gemessene Extinktionen sind zu hoch und werden nicht angezeigt.	 Bei mindestens einer Wellenlänge des Scans war die Extinktion oberhalb des Messbereichs. Trübungen in der Messlösung. Messungen an den Grenzen des photometrischen Messbereichs. 	Wenn die nicht angezeigten Bereiche des Scans relevant sind: Probe verdünnen bzw. durch Zentrifugation Trübung beseitigen und Messung wiederholen.
Extinktion bei der Messwellenlänge ist zu hoch.	 Trübungen in der Messlösung. Optische Flächen der Küvette verschmutzt. Küvette in falscher Orientierung in den Küvettenschacht gesteckt. Zu hohe Extinktion der Messlösung. 	Unter Berücksichtigung der möglichen Ursachen neu messen.
Das berechnete Ergebnis ist negativ.	Messlösung falsch angesetzt.Faktor falsch eingegeben (falsches Vorzeichen).	 Unter Berücksichtigung der möglichen Ursachen neu messen.
Ergebnis hat mehr als 6 Vorkommastellen.	 Sehr hohe Probenkonzentration. Konzentrationseinheit passt nicht zu dem erwarteten Bereich der Probenkonzentrationen. 	 Probe verdünnen und neu messen. Konzentrationseinheit (Parameter Unit) ändern und neu messen.
Das Ergebnis liegt um mehr als 5 % außerhalb des Bereichs der Standardkonzentrat ionen.	Bei Methoden mit Auswertung über Standardkurven (nichtlinearen Auswerteverfahren): Das Probenergebnis liegt um mehr als 5 % außerhalb des Bereichs der Standardkonzentrationen.	Probe unter Bedingungen neu messen, unter denen das Ergebnis im Bereich der Standardkonzentrationen liegt (Probe verdünnen, Standardkonzentrationen verändern und neu messen).

Symptom/Meldung	Mögliche Ursache	Abhilfe
 Berechnung ist nicht möglich, weil durch Null geteilt wird. Extinktionserge bnis ist Null. Fehler bei der Berechnung. Division durch Null. 	Bei der Auswertung musste durch ein Extinktionsergebnis mit dem Wert "Null" geteilt werden. Das ist mathematisch nicht zulässig. Beispiele: Berechnung eines Faktors bei Einpunktkalibrierung; Berechnung einer Ratio 260/280 bei Nukleinsäuremessungen.	▶ Überprüfen Sie die verwendeten Reagenzien und Proben und wiederholen Sie die Messung.

10 Transport, Lagerung und Entsorgung

10.1 Transport

▶ Verwenden Sie die Originalverpackung für den Transport.

	Lufttemperatur	Relative Luftfeuchte	Luftdruck
Allgemeiner Transport	-25 °C – 60 °C	10 % - 95 %	30 kPa – 106 kPa
Luftfracht	-40 °C – 55 °C	10 % – 95 %	30 kPa – 106 kPa

10.2 Lagerung

	Lufttemperatur	Relative Luftfeuchte	Luftdruck
in Transportverpackung	-25 °C – 55 °C	25 % - 75 %	70 kPa – 106 kPa
ohne Transportverpackung	-5 °C – 45 °C	25 % – 75 %	70 kPa – 106 kPa

10.3 Entsorgung

Bei einer Entsorgung des Produkts sind die einschlägigen gesetzlichen Vorschriften zu beachten.

Hinweise zur Entsorgung von elektrischen und elektronischen Geräten in der Europäischen Gemeinschaft:

Innerhalb der Europäischen Gemeinschaft wird die Entsorgung von elektrischen Geräten durch nationale Vorschriften geregelt, die auf der EU-Richtlinie 2012/19/EU über Elektro- und Elektronik-Altgeräte (WEEE) basieren.

Nach diesen Vorschriften dürfen alle nach dem 13. August 2005 gelieferten Geräte im Business-to-Business-Bereich, in den dieses Produkt einzuordnen ist, nicht mehr im kommunalen Abfall oder Hausmüll entsorgt werden. Um dies zu dokumentieren, sind sie mit folgendem Symbol gekennzeichnet:

Da sich die Entsorgungsvorschriften innerhalb der EU von Land zu Land unterscheiden können, bitten wir Sie, sich bei Bedarf bei Ihrem Lieferanten zu informieren.

11 Technische Daten

11.1 Stromversorgung

Spannungsversorgung	100 V bis 240 V ±10 %, 50 Hz bis 60 Hz
Überspannungskategorie	II
Verschmutzungsgrad	2
Leistungsaufnahme	Maximal auftretende Leistung laut Typenschild: 25 W Ca. 15 W im Bedienablauf Ca. 5 W mit gedimmtem Display
Zulässige Netzunterbrechung	Ca. 10 ms bei 90 V Ca. 20 ms bei 230 V
Schutzklasse	I
Sicherungen	T 2,5 A/250 V, 5 mm × 20 mm (2 Stück)

11.2 Umgebungsbedingungen

	Umgebungstemperatur: 15 °C bis 35 °C Rel. Luftfeuchte: 25 % bis 70 % Luftdruck: 86 kPa bis 106 kPa
Luftdruck	Verwendung bis zu einer Höhe von 2000 m über Meereshöhe

Vor direktem Sonnenlicht schützen.

11.3 Gewicht/Maße

Gewicht	5,4 kg	
Abmessungen	Breite: 295 mm Tiefe: 400 mm Höhe: 150 mm	
Benötigter Raum	Breite: 500 mm (mit Thermodrucker: 750 mm) Tiefe: 500 mm	

11.4 Photometrische Eigenschaften

Messprinzip	Absorptions-Einstrahlphotometer mit Referenzstrahl
Lichtquelle	Xenon-Blitzlampe
Spektrale Zerlegung	Holographisches aberrationskorrigiertes Konkavgitter
Strahlungsempfänger	CMOS Photodioden
Wellenlängen	230 nm, 260 nm, 280 nm, 320 nm, 340 nm, 405 nm, 490 nm, 562 nm, 595 nm, 600 nm
Wellenlängenwahl	Methodenabhängig, frei wählbar
Spektrale Bandbreite	≤ 4 nm
Systematische Messabweichung der Wellenlänge	±1 nm
Zufällige Messabweichung der Wellenlänge	≤ 0,5 nm
Photometrischer Messbereich	0 A bis 3,0 A bei 260 nm
Ablesegenauigkeit	$\Delta A = 0,001$
Zufällige Messabweichung des Photometers	≤ 0,002 bei A = 0 ≤ 0,005 (0,5 %) bei A = 1
Systematische Messabweichung des Photometers	±1 % bei A = 1
Falschlichtanteil	< 0,05 %

11.5 Weitere technische Parameter

Küvettenmaterial	Für Messungen im UV: Quarzglas oder UV-transparenter Kunststoff (UVette von Eppendorf, 220 nm bis 1600 nm) Für Messungen im sichtbaren Bereich: Glas oder Kunststoff
Gesamthöhe der Küvetten	Mind. 36 mm
Höhe des Lichtstrahls in der Küvette	8,5 mm
Tastatur	22 Folientasten 6 Folientasten als Softkeys
Ergebnisausgabe	Extinktion, Transmission, Konzentration, eingeschränkter Scan (Extinktions-Wellenlängen-Spektrum) Methodenabhängig weitere Zusatzdaten (Ratio, Background-Extinktionen)
Display	VGA TFT-Display 5,7"
Sprachen für Bedienerführung	Englisch, Französisch, Spanisch, Italienisch, Deutsch, Japanisch
Schnittstellen	USB Master: Für USB-Stick und Thermodrucker DPU-S445 USB Slave: Für Verbindung mit einem PC Serielle Schnittstelle RS 232: Für Thermodrucker DPU-414 Ethernet-Schnittstelle RJ45: Für Verbindung mit einem Netzwerk Angeschlossene Geräte müssen den Sicherheitsanforderungen gemäß IEC 60950-1 entsprechen.

11.6 Anwendungsparameter

Methoden	Vorprogrammierte und frei programmierbare Methoden für alle Mess- und Auswerteverfahren:
Methodenabhängige Auswertung	Extinktion, Konzentration über Faktor und Standard. Konzentration über Standardreihe: • Lineare Regression • Nichtlineare Regression (Polynom 2. und 3. Grades) • Spline-Auswertung • Lineare Interpolation (Punkt-zu-Punkt Auswertung) Zusatzdaten für Nukleinsäuren: Ratio 260/280 und 260/230; Molare Konzentration, Gesamtausbeute
Methodenspeicher	> 100 Methodenprogramme
Messwertspeicher und Kalibrationsspeicher	Speicher für > 1 000 Ergebnisse mit allen Daten der Ergebnis- und Standardauswertung, Probennummer, Probenname, Datum und verwendetem Parametersatz des Methodenprogramms (Die Anzahl der gespeicherten Ergebnisse ist abhängig von der Anzahl der gespeicherten Methoden.)

12 Auswerteverfahren

Dieses Kapitel beschreibt die in den Methodenprogrammen verfügbaren Auswerteverfahren sowie die Berechnung einer Verdünnung durch die Geräte-Software.

Beachten Sie beim Vergleich von Messergebnissen mit den Ergebnissen anderer Photometer/ Spektralphotometer, dass die Werte von der Bandbreite der Geräte abhängen können. In den folgenden Fällen können die Unterschiede erheblich sein:

- Das Extinktionsspektrum weist bei der Messwellenlänge einen schmalen Peak auf.
- Es wird nicht am Maximum, sondern auf der Flanke eines Peaks gemessen.

Kontrollieren Sie daher die Richtigkeit der Methode durch die Messung von Standards.

12.1 Extinktionswerte

Extinktionswerte werden als A_{XXX} (XXX steht für die Wellenlänge) dargestellt. Diese Anzeigen entsprechen immer den direkt gemessenen Werten, d.h. ohne Korrekturen, die in die anschließende Auswertung einfließen, wie z.B. Korrekturen für optische Schichtdicken der Küvette oder Background-Korrekturen.

12.1.1 Blank

Alle Extinktionswerte sind immer auf den zuletzt gemessenen Blank (Leerwert) bezogen. Eine Blank-Messung ist daher zu Beginn einer jeden Messreihe obligatorisch und auch während einer Messreihe jederzeit möglich. Die Blank-Messung sollte idealerweise alle Einflussmöglichkeiten auf den Extinktionswert der Messlösung kompensieren können. Der Blank sollte daher mit dem auch für die Probenmessung benutzten Puffer sowie in derselben Küvette wie der Probenwert gemessen werden – es sei denn, die für Blank- und Probenmessung benutzten Küvetten sind optisch gegeneinander abgeglichen, haben also denselben Extinktionswert bei der Messwellenlänge.

12.1.2 Background-Korrektur

Hauptanwendung: Partielle Korrektur von Verfälschungen der Extinktion bei Nukleinsäuremessungen durch Trübungen in der Messlösung. Beispielsweise wird die Extinktion bei 320 nm, die bei reinen Nukleinsäuren etwa bei 0 A liegen sollte, von der Extinktion bei 260 nm, der Messwellenlänge für Nukleinsäuren, subtrahiert.

$$A_{XXX,corrBkgr} = A_{XXX} - A_{Bkgr}$$

 $A_{XXX, korrBkqr}$ = rechnerisch korrigierte Extinktion bei der Wellenlänge XXX nm.

 A_{XXX} = gemessene Extinktion bei der Wellenlänge XXX nm.

 A_{Bkqr} = gemessene Extinktion bei der Background-Wellenlänge.

12.1.3 Küvettenkorrektur

Sämtliche Extinktionswerte, die in Ergebnisberechnungen eingehen, sind auf die Küvetten-Schichtdicke 10 mm normiert. Wird eine Küvette mit einer anderen Schichtdicke benutzt, muss diese Schichtdicke im Parameter **Cuvette** definiert werden. In diesem Fall werden die gemessenen Extinktionen vor der Umrechnung in Probenergebnisse auf Messergebnisse mit einer Küvette der Schichtdicke 10 mm korrigiert.

Diese Korrektur wird angewendet auf:

- Methoden mit Auswertung über Faktor.
- Methoden der Gruppe Absorbance, bei denen nur Extinktionswerte ausgegeben werden.

Die Korrektur wird nicht angewendet auf:

- Methoden mit Auswertung über Standards, da vorausgesetzt wird, dass Standards und Proben in Küvetten derselben Schichtdicke gemessen werden.
- Berechnung von Ratios wie A_{260}/A_{280} (bei Nukleinsäuremessungen).

$$A_{XXX,corrCuv} = A_{XXX} \times \frac{10}{Cuv}$$

 $A_{XXX, korrCuv}$ = rechnerisch korrigierte Extinktion bei der Wellenlänge XXX nm.

 A_{XXX} = gemessene Extinktion bei der Wellenlänge XXX nm.

Cuv = Schichtdicke der Küvette.

12.2 Transmission

In der Methodengruppe **Absorbance** kann neben der reinen Extinktion auch die prozentuale Transmission (T%) bestimmt werden.

$$T [\%] = 10^{-A} \times 100$$

A = Extinktion

T = Transmission

12.3 Auswertung mit Faktor oder Standard

 $C = A \times F$

C = berechnete Konzentration.

A = Extinktion.

F = Faktor.

Der Faktor ist in der Parameterliste programmiert und kann verändert werden. Er bezieht sich immer auf die Küvettenschichtdicke 10 mm. Wenn Sie den Parameter **Cuvette** ändern, wird die Änderung vom Gerät bei der Ergebnisberechnung berücksichtigt. Sie müssen den Faktor für die Auswertung also nicht ändern.

Wenn Sie die Konzentrationseinheit ändern, müssen Sie dagegen darauf achten, dass der Faktor an die gewählte Einheit angepasst ist.

Der Faktor wird entweder beim Auswerteverfahren "Factor" direkt als Parameter eingegeben oder beim Auswerteverfahren "Standard" (Auswertung mit einer Standardkonzentration) berechnet:

$$F = \frac{C_S}{A_S}$$

F = berechneter Faktor.

 C_S = Konzentration des Standards (als Parameter eingegeben).

 A_S = gemessene Extinktion des Standards.

Wurde für den Standard Mehrfachmessung (2 oder 3 Replikate) programmiert, wird aus den gemessenen Extinktionen der Replikate der Mittelwert gebildet und als A_S eingesetzt.

12.4 Auswertung mit Standardkurve/-gerade

Wird mit mehr als einem Standard ausgewertet, können mit dem [Curve fit] im Methodenschritt **measure standards/new** folgende Auswerteverfahren für die Standardkurve/-gerade ausgewählt werden:

Auswerteverfahren	Beschreibung	Erforderliche Mindestzahl an Standardpunkten
linear interpolation	Lineare Punkt-zu-Punkt-Verbindung im Extinktions-Konzentrations-Graph en der Standardauswertung.	Mindestens 2 Standards.
linear regression	Polynomregression für Polynom ersten Grades.	Mindestens 3 Standards.
quadratical regression	Polynomregression für Polynom zweiten Grades.	Mindestens 4 Standards.
cubical regression	Polynomregression für Polynom dritten Grades.	Mindestens 5 Standards.
spline interpolation	Interpolation durch natürliche kubische Splines.	Mindestens 3 Standards.

Zusätzlich kann für Regressionsverfahren gewählt werden, dass die Regressionsgerade (Regressionskurve) durch den Nullpunkt geht.

- Verwenden Sie für Kalibrationsgeraden das Verfahren "linear regression".
- Testen Sie bei kurvenförmigen Verläufen, welches Auswerteverfahren (quadratische Regression, kubische Regression, Spline Interpolation) die für die Standardauswertung am besten geeignete Funktion ergibt. Die Spline Interpolation verbindet die Messpunkte durch kubische Polynome, während die Regressionsverfahren eine quadratische bzw. kubische Funktion so zwischen die Messpunkte legen, dass für die Messpunkte möglichst geringe Abweichungen von der Funktion resultieren.
- Bei den Regressionsverfahren wird neben der berechneten Regressionsgleichung auch das Bestimmtheitsmaß (coefficient of determination) als Maß für die Streuung der Messpunkte um die berechnete Funktion angezeigt. Bei einem Wert von < 0.8 für das Bestimmtheitsmaß wird das Ergebnis mit einer Warnung versehen.
- Wenn der erste Standard die Konzentration "0" hat, wählen Sie die Einstellung, dass die Regressionsgerade (Regressionskurve) durch den Nullpunkt geht.
- Wenn keines der für kurvenförmige Verläufe empfohlenen Verfahren zufriedenstellende Ergebnisse bringen, wählen Sie das Verfahren "linear interpolation".

12.5 Verdünnung

Im Methodenschritt **measure samples** eingegebene Verdünnungen werden bei der Ergebnisberechnung berücksichtigt:

$$C_{Dil,korr} = C \times \frac{V_P + V_{Dil}}{V_P}$$

 $C_{Dil, korr}$ = mit Verdünnungsfaktor umgerechnetes Ergebnis

 V_P = Volumen der Probe in der Messlösung

 V_{Dil} = Volumen des Diluents in der Messlösung

12.6 Spezielle Auswerteverfahren für Nukleinsäuren und Protein UV

Dieser Abschnitt bezieht sich auf die Auswertung von Nukleinsäuren bzw. Proteinen in den Methodengruppen **Nucleic acids** und **Proteins direct UV**.

12.6.1 Ratio A260/A280 und Ratio A260/A230

Anwendung: Information zur Reinheit der gemessenen Nukleinsäure. In den Methodenparametern ist die Auswertung der Ratios **A260/A280** und **A260/A230** aktiviert.

"Ratio" bezeichnet den Quotienten der gemessenen Extinktionen bei den genannten Wellenlängen.

Literaturwerte für die Ratio-Werte bei reinen Nukleinsäuren:

A260/A280

DNA: 1,8 bis 1,9RNA: 1,9 bis 2,0

(Current Protocols in Molecular Biology, 1994)

A260/A230

Für die Ratio A260/A230 findet man in der Literatur unterschiedliche Angaben für reine Nukleinsäuren:

 DNA: 2,3 bis 2,5 (The Nucleic Acids, 1955)

• DNA: 1,9

(Current Protocols in Molecular Biology, 1994)

Die Werte sind stark vom pH-Wert abhängig. Nukleinsäuren sollten daher nicht in Wasser, sondern in einem Puffer mit pH-Wert 7 bis 7,2 gemessen werden (z.B. TE-Puffer).

12.6.2 Umrechnung in molare Konzentrationen und Nukleinsäuremengen

Die Umrechnung kann nur für Nukleinsäuren angewendet werden. Sie erfolgt im Methodenschritt **process results/More calculations**.

12.6.2.1 Berechnung der Menge

Anwendung: Berechnung der Menge (Masse) an Nukleinsäure im gesamten Probenvolumen.

$$M = C \times V_{P,gesamt}$$

M = berechnete Gesamtmenge (Masse) der Nukleinsäure im Probengefäß. Einheit: µg.

C = aus der Messung berechnete Konzentration der Nukleinsäure. Einheit: μ g/mL oder ng/ μ L.

 $V_{P, gesamt}$ = Gesamtvolumen der Probe im Probengefäß. Geben Sie diesen Wert in **More calculations** ein. Einheit: μ L.

12.6.2.2 Berechnung der molaren Konzentration

Anwendung: Berechnung der molaren Konzentration der Nukleinsäure aus Massenkonzentration und relativer Molmasse. Die Molmasse wird entweder direkt eingegeben oder vom Gerät aus der eingegebenen Zahl der Basen bzw. Basenpaare pro Nukleinsäuremolekül errechnet.

$$C_{Mol} = \frac{C \times 10^3}{MM}$$

 C_{Mol} = berechnete molare Konzentration der Nukleinsäure. Einheit: pmol/mL.

C = aus der Messung berechnete Massenkonzentration der Nukleinsäure. Einheit: μ g/mL oder ng/ μ L.

MM = relative Molmasse. Einheit: kDa

Falls in **More calculations** statt der relativen Molmasse die Zahl der Basen bzw. Basenpaaren pro Nukleinsäuremolekül eingegeben wurde, wird MM aus der Zahl der Basen bzw. Basenpaaren berechnet:

Für dsDNA:

$$MM = bp \times 2 \times 330 \times 10^{-3}$$

Für ssDNA, RNA, Oligo:

$$MM = b \times 330 \times 10^{-3}$$

MM = berechnete relative Molmasse; Einheit: kDa

bp = eingegebene Zahl der Basenpaare pro Molekül

b = eingegebene Zahl der Basen pro Molekül

- Für dsDNA wird bei der Berechnung der molaren Konzentration eine doppelsträngige Nukleinsäure angenommen. Für die Methoden ssDNA, RNA und Oligo wird eine einzelsträngige Nukleinsäure angenommen.
- Für Methoden, die in der Hauptgruppe **Routine**, Methodengruppe **Nucleic acids** über <**New Method>** neu programmiert wurden, werden für die Berechnung der molaren Konzentration immer doppelsträngige Nukleinsäuren angenommen.

12.6.3 Berechnung des Faktors für Protein in "General Method Parameter"

Dieser Abschnitt gilt nur für Berechnung der Proteinkomponente in der Methodengruppe **Proteins direct UV.** Bei dieser Methodengruppe wird in den Parametern die Proteinkomponente ausgewählt (siehe *Methodenparameter auf S. 32*). Der Proteinkomponente ist ein Faktor zugeordnet, der in der Funktion **General Method Parameter/Proteins** für jedes Protein eingegeben wird. Alternativ zur Eingabe des Faktors kann entweder $A_{0.1\%}$ oder der Extinktionskoeffizient plus die Molmasse des Proteins eingegeben werden. In diesem Fall wird der Faktor wird wie folgt berechnet:

$$F_{P} = \frac{1}{A_{0.1\%}}$$

F = Faktor für das Protein; Einheit: g/L.

 $A_{0.1\%}$ = Extinktion des Proteins bei einer Konzentration von 0,1 % (1 g/L).

Bei Eingabe des molaren Extinktionskoeffizienten und der relativen Molmasse des Proteins kann $A_{0.1\%}$ hieraus berechnet werden:

$$A_{0.1\%} = \frac{\mathcal{E}_P}{MM_P}$$

 ε_P = molarer Extinktionskoeffizient des Proteins; Einheit: cm⁻¹M⁻¹.

 MM_P = relative Molmasse des Proteins; Einheit: Da (Eingabe in **General Method Parameter** in kDa).

Auswerteverfahren

88

Eppendorf BioPhotometer® D30 Deutsch (DE)

13 Bestellinformationen

BestNr.	BestNr.	Beschreibung
(International)	(Nordamerika)	
		Eppendorf BioPhotometer D30
6133 000.001	_	230 V/50 – 60 Hz, Netzstecker Europa, weitere
		Netzanschlussvarianten erhältlich
6133 000.010	6133000010	120 V/50 – 60 Hz, Netzstecker Nordamerika
		Eppendorf μCuvette G1.0 und BioPhotometer D30 (Bundle)
		Eppendorf-Mikrovolumen-Messzelle und BioPhotometer D30
6133 000.907	6133000907	230 V/50 – 60 Hz
6133 000.908	6133000908	120 V/50 – 60 Hz
		BioPhotometer D30-Referenzfiltersatz
6133 928.004	6133928004	Filtersatz zur Überprüfung der photometrischen Richtigkeit
		und Wellenlängenrichtigkeit (gemäß NIST)
		Thermodrucker DPU-S445
		inkl. Netzteil und Druckerkabel
6135 011.000		230 V, EU
6135 010.004	6135010004	115 V/110V, USA, JP
6135 012.007		230 V, UK
		Thermopapier
0013 021.566	952010409	5 Rollen
		Eppendorf μCuvette G1.0
6138 000.018	6138000018	Eppendorf Mikrovolumen-Messzelle für die Eppendorf
-		BioPhotometer und BioSpectrometer
		Eppendorf UVette 220 nm – 1 600 nm
		Original Eppendorf Kunststoffküvette, PCR clean, Protein-free
0030 106.300	952010051	50 - 2 000 μL, 80 Stück, einzeln verpackt
		Eppendorf UVette routine pack 220 nm – 1 600 nm
		Eppendorf Quality
0030 106.318	952010069	50 - 2 000 μL, 200 Stück, wiederverschließbare Box
		Eppendorf macro Vis Cuvettes
0030 079.345	0030079345	10 × 100 Stück
		Eppendorf semi-micro Vis Cuvettes
0030 079.353	0030079353	10 × 100 Stück
		Eppendorf Cuvette Rack
		36 Plätze, für Glas- und Kunststoffküvetten, nummerierte
		Plätze
0030 119.851	0030119851	2 Stück, Polypropylen, autoklavierbar

Bestellinformationen

90

Eppendorf BioPhotometer® D30 Deutsch (DE)

eppendorf

Declaration of Conformity

The product named below fulfills the requirements of directives and standards listed. In the case of unauthorized modifications to the product or an unintended use this declaration becomes invalid.

Product name:

Eppendorf BioPhotometer® D30

Product type:

Photometer

Relevant directives / standards:

2014/35/EU: EN 61010-1

UL 61010-1, CAN/CSA C22.2 No. 61010-1

2014/30/EU: EN 55011, EN 61326-1

2011/65/EU: EN 50581

Date: December 28, 2015

Management Board

Your local distributor: www.eppendorf.com/contact Eppendorf AG · 22331 Hamburg · Germany

eppendorf@eppendorf.com

Eppendorf® and the Eppendorf logo are registered trademarks of Eppendorf AG, Germany. U.S. Design Patents are listed on www.eppendorf.com/ip.
All rights reserved, incl. graphics and pictures. Copyright 2015 © by Eppendorf AG.

ISO 9001 Certified

13485 Certified

14001 Certified

Evaluate Your Manual

Give us your feedback. www.eppendorf.com/manualfeedback